Matthew Rodriquez Secretary for Environmental Protection Barbara A. Lee, Director 8800 Cal Center Drive Sacramento, California 95826-3200

May 11, 2016

Robert Laughton, LEED AP Director, Environmental Health and Safety Los Angeles Unified School District 333 South Beaudry Avenue, Floor 21 Los Angeles, CA 90017

RESULTS OF SOIL SAMPLING AT LOMA VISTA SCHOOL, 3629 EAST 58TH STREET, MAYWOOD, CALIFORNIA 90255; EXPANDED AREA SCHOOL SCH-16

Dear Mr. Laughton,

Enclosed with this letter are the results of the soil sampling conducted at 11 Los Angeles County Unified School District Schools. This letter is specific to Loma Vista School (Expanded Area School SCH-16) located at 3629 East 58th Street, Maywood, California (Property). Avocet Environmental, Incorporated (Avocet) conducted that soil sampling on July 7, 2015 in accordance with the DTSC-approved sampling work plan dated July 26, 2014.¹ The laboratory results of analysis for lead in soils collected on the Property did not reveal concentrations above 80 parts-per-million; the Department's current level of concern. Based on the laboratory results, additional soil sampling and/or cleanup are not warranted for the Property.

If you have any questions regarding this letter, please contact me at (916) 255-3630 or at Peter.Ruttan@dtsc.ca.gov.

Peter Ruttan Project Manager Legacy Landfills Office

Attachments (3)

Sincerely

cc: (via email) Mr. Pat Schanen, LAUSD Mr. Bill Piazza, LAUSD

Department of Toxic Substances Control
Barbara A. Lee, Director

Edmund G. Brown Jr. Governor

¹ Advanced GeoServices Corporation; *"Addendum to the November 15, 2013 Work Plan for Off-site Soil Sampling"*, July 26, 2014.

ATTACHMENT 1

July 2015 Soil Sampling Field Activities Report Los Angeles Unified School District Schools

July 31, 2015

July 31, 2015

2013-3007-09

Pat Schanen, Environmental Health Manager Office of Environmental Health and Safety Los Angeles Unified School District 333 South Beaudry Avenue, 28th Floor Los Angeles, CA 90017

RE: Revised Report on LAUSD K-12 School Sampling Select Areas of Maywood, Huntington Park and Los Angeles, California

Dear Mr. Schanen:

Enclosed is a revised report on the school sampling that Advanced GeoServices performed on behalf of Exide Technologies. The comments that you provided on the report dated July 23 have been incorporated, and a revised table and report is attached. This report is also being provided to the California Department of Toxic Substances Control.

If you have any further questions, please contact me at 610-840-9145 or by email at <u>bforslund@advancedgeoservices.com</u>.

Respectfully submitted,

ADVANCED GEOSERVICES CORP.

Banga C

Barbara L. Forslund Consultant

BLF:vm

cc: Peter Ruttan, DTSC Eileen Ma, LAUSD Jay Golida, LAUSD Paul Straman, Advanced GeoServices Fred Ganster, Exide John Hogart, Exide Tom Strang, Exide Randy Visser, Sheppard Mullin

EXIDE VERNON 2014 - 2015 Residential Soil Sampling Lead Results

Sample Location(s): SCH-06 through SCH 10

Sample Date: 7/6/2015

Sample Depth	SCH-06	SCH-07	SCH-08	SCH-09	SCH-10
0-1"	29.2	81.7	52.7	68.6	11
1-3"	17	87.3	37.9	70.1	13.8
3-6"	17.6	81.5	47.6	112	13.1
6-12"	43.6	66.4	75.6	52.6	16.2
12-18"	13.6	17.1	25.8	29.9	10.2

Samples are composites All lead results reported in mg/kg

Sample Location(s): SCH-11 through SCH 16

Sample Date: 7/7/2015

Sample Depth	SCH-11	SCH-12	SCH-13	SCH-14	SCH-15	SCH-16
0-1"	155	12.4	88.1	31.3	43.1	39.5
1-3"	207	19	74.8	19.4	52.2	42.1
3-6"	44.6	28	70.4	17.7	33.4	70.7
6-12"	43.6	27.1	45.3	16.5	23.5	48
12-18"	15.6	12.7	22.1	19.4	16.6	18.4

Samples are composites All lead results reported in mg/kg

NOTE: Sample locations SCH-01 through SCH-05 are at private schools not owned by LAUSD

July 30, 2015

Project No. 1325.007

Ms. Barbara Forslund, P.E. ADVANCED GEOSERVICES CORP. 1055 Andrew Drive, Suite A West Chester, Pennsylvania 19380

July 2015 Soil Sampling Field Activities Report Los Angeles Unified School District Schools

Los Angeles County, California

Dear Ms. Forslund:

This letter report documents the soil sampling procedures at 11 Los Angeles Unified School District (LAUSD) schools on July 6 and 7, 2015. The work described herein was performed in association with the Exide Technologies offsite subsurface soil sampling program, which has analyzed lead concentrations on private and public properties throughout many parts of East Los Angeles, Maywood, Huntington Park, and the surrounding communities. Specifics regarding the names and addresses of the individual schools, among other details, are summarized in Table 1. A site vicinity map identifying the locations of the schools is included as Figure 1.

REGULATORY OVERSIGHT

Access to the school properties was made possible by Mr. Bill Piazza, LAUSD's environmental assessment coordinator. Mr. Piazza also managed interactions with school personnel and provided general site supervision on behalf of the LAUSD. Regulatory oversight and public relations were provided by Mr. Peter Ruttan of the California Department of Toxic Substances Control (DTSC). Mr. Piazza and Mr. Ruttan observed the sampling crew at each school to verify the suitability of sample locations and to ensure proper sampling protocol in accordance with Advanced GeoServices Corp.'s (AGC's) November 15, 2013 Work Plan and its July 26, 2014 Addendum.

FIELD METHODS

Avocet was retained by AGC to complete a composite soil sampling program that involved the collection of discrete soil samples from the approximate depths of 1, 3, 6, 12, and 18 inches below ground surface (bgs) at five unique boring locations at each school. For every school, five composite samples, one from each depth interval, were prepared and submitted for chemical analysis. The samples were collected from grassy play areas, sports fields, or other common areas where students are likely to come into contact with exposed soil. For properties with limited exposed soil or where the playground is predominantly asphalt, samples were collected inside of tree wells. The approximate locations of the soil samples collected at each of the schools are illustrated in Figures 2 through 12.

Los Angeles Unified School District Schools Los Angeles County, California

Representative soil samples were collected at depth using either a freshly decontaminated trowel or hand auger. The soil was transferred directly into plastic bags that were then sealed and labeled as discrete samples with the sample identification code, date, and the time at which the sample was collected. Each shallow boring was backfilled upon completion with soil cuttings, tamped for light compaction, and topped with planting soil to match grade. Sampling tools were decontaminated between each boring by washing with laboratory-grade, phosphate-free detergent and then rinsed using deionized water. Fresh nitrile gloves were donned by field personnel between each boring and as necessary to prevent cross-contamination between soil samples.

The composite samples submitted for laboratory analysis were collected by measuring equal volumes of soil from each of the five discrete soil samples collected at a given depth throughout the school and then combined and thoroughly mixed in a sealed plastic bag. An aliquot of the mixed composite sample was then transferred into a sterile plastic bag that was sealed, labeled, placed in a cooler, and delivered to the analytical laboratory that same day. In all, five composite samples were collected from each school for laboratory testing, one for each depth interval listed above.

The composite soil samples were submitted, under appropriate chain-of-custody procedures, to Eurofins Calscience, a certified environmental laboratory located in Garden Grove, California, for analysis for lead using U.S. Environmental Protection Agency (EPA) Method 6010B. The remaining discrete soil samples were placed in a labeled container at Exide pending possible future analysis.

In addition to the soil samples, two equipment blank samples, one at the end of each work day, were collected by capturing analytical laboratory-provided water poured across a previously decontaminated hand trowel. The equipment blank samples were also analyzed for lead using EPA Method 6010B.

It should be noted that one discrete sample from the 18-inch depth interval (Location 5D) at Eastman Avenue Elementary School could not be collected due to tree roots. Therefore, the composite sample from the 18-inch depth interval (SCH-11-18) is comprised of equal volumes of soil from four rather than five discrete sample locations.

Respectfully submitted,

AVOCET ENVIRONMENTAL, INC.

Deke Siren, P.G. Project Manager

DCS:sh Attachments

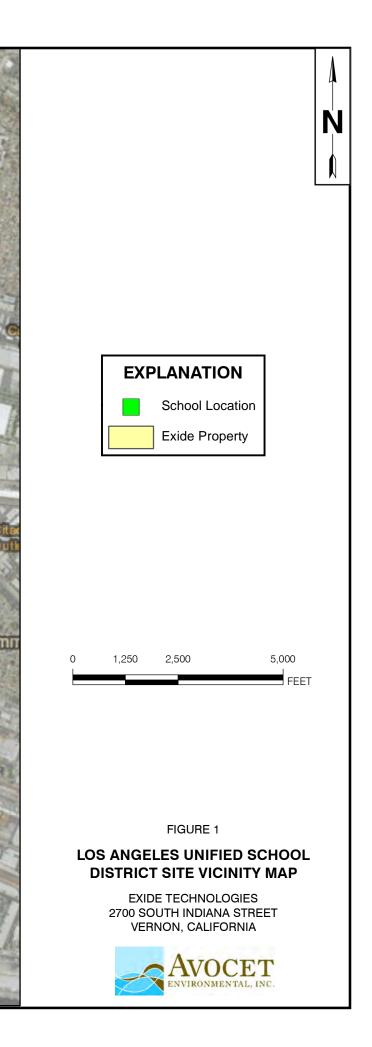
 $P: \label{eq:accomparameter} P: \label{eq:accomparameter} 1325\ AGC-Exide_Vernon \label{eq:accomparameter} 007_Offsite\ Soil\ Sampling \label{eq:accomparameter} LAUSD\ Sch\ Sites \label{eq:accomparameter} Supporting \mbox{Docs} \label{eq:accomparameter} LAUSD\ Sch\ Sites \label{eq:accomparameter} Support\ Support\$

Tables

Table 1List of LAUSD Schools Sampled

Los Angeles County, California

School ID (for sampling purposes)	School Name	Address	Date Sampled	Number of Samples
SCH-06	Oscar De La Hoya Animo High School	1114 South Lorena Street Los Angeles, CA 90023	07/06/15	5
SCH-07	Lorena Street School	1015 South Lorena Street Los Angeles, CA 90023	07/06/15	5
SCH-08	Robert Louis Stevenson Middle School	725 South Indiana Street Los Angeles, CA 90023	07/06/15	5
SCH-09	Rowan Avenue School	600 South Rowan Avenue Los Angeles, CA 90023	07/06/15	5
SCH-10	Amanecer Primary Center	832 South Eastman Avenue Los Angeles, CA 90023	07/06/15	5
SCH-11	Eastman Avenue School	4112 East Olympic Boulevard Los Angeles, CA 90023	07/07/15	5
SCH-12	Maywood School	5200 Cudahy Avenue Maywood, CA 90270	07/07/15	5
SCH-13	Fishburn Avenue Middle School and Clemente Charter	5701 Fishburn Avenue Maywood, CA 90270	07/07/15	5
SCH-14	Huntington Park School	6055 Corona Avenue Huntington Park, CA 90255	07/07/15	5
SCH-15	Chester W. Nimitz Middle School	6021 Carmelita Avenue Huntington Park, CA 90255	07/07/15	5
SCH-16	Loma Vista	3629 East 58 th Street Maywood, CA 90270	07/07/15	5


Note: School IDs SCH-01 through SCH-05 are for schools not owned by LAUSD

Figures

Sample Location

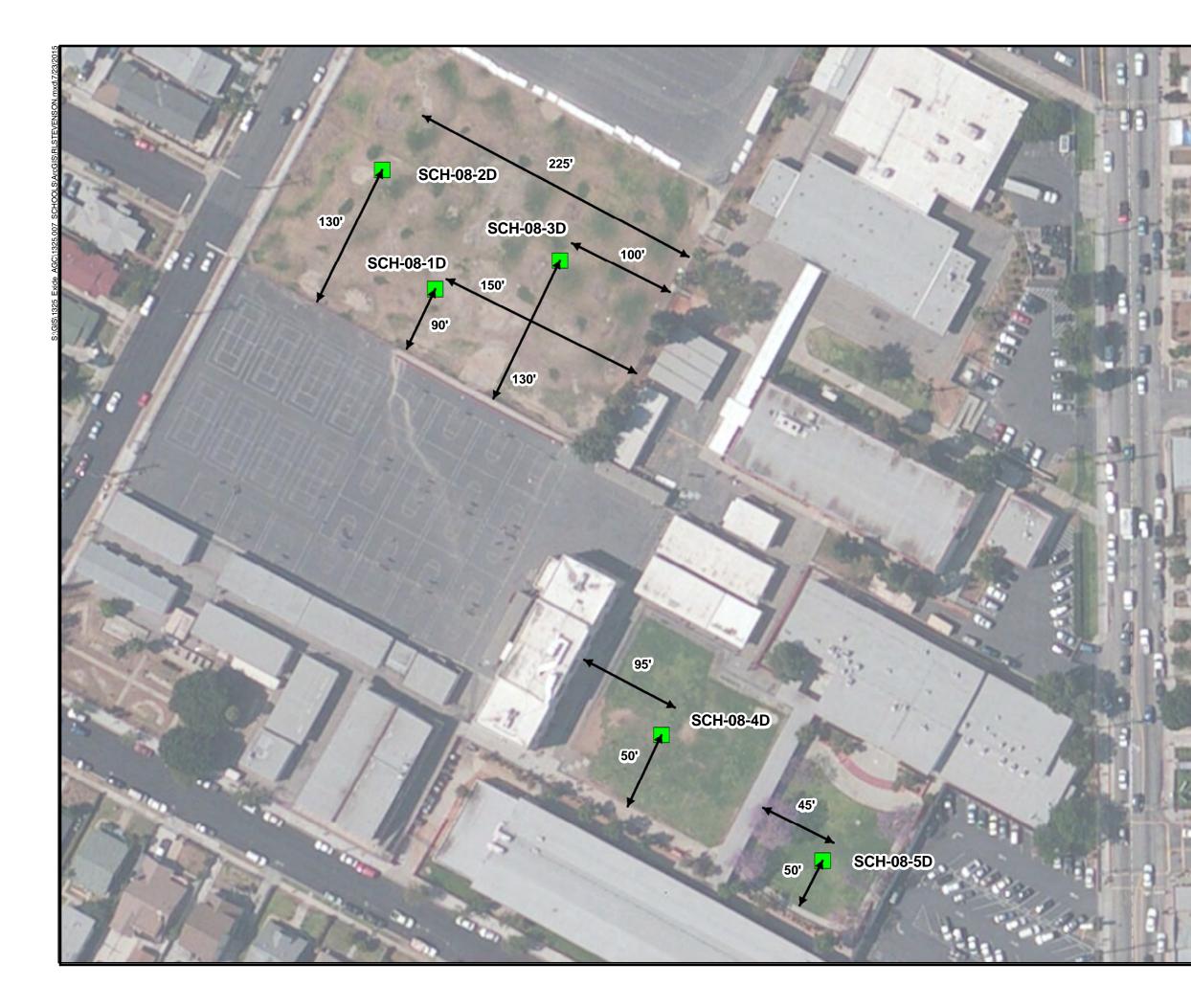
←68' → Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 2

OSCAR DE LA HOYA AMINO CHARTER SCHOOL

Sample Location


←68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 3

LORENA STREET SCHOOL

Sample Location

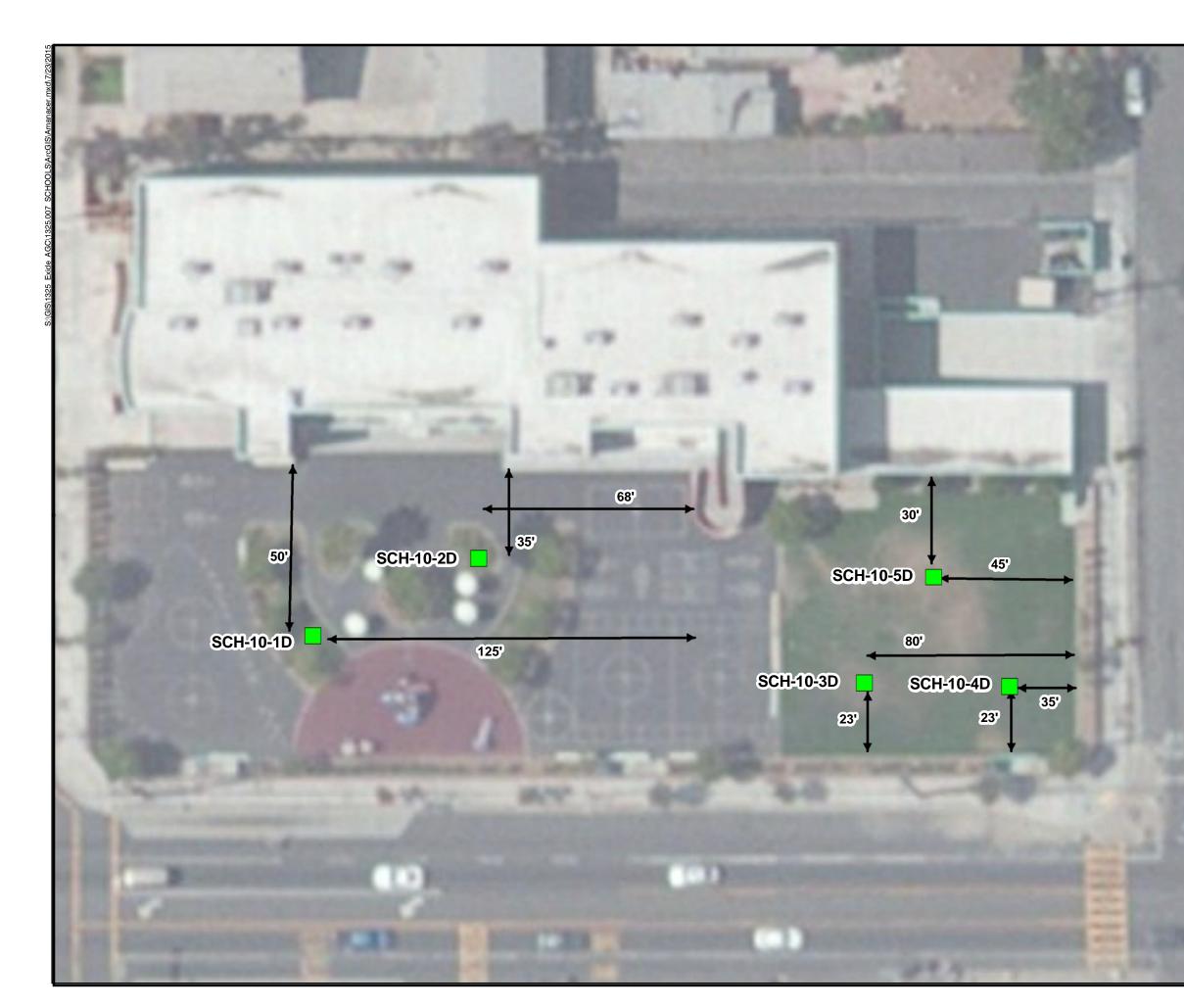
◆68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE

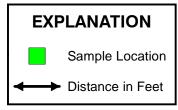
FIGURE 4

ROBERT LOUIS STEVENSON MIDDLE SCHOOL

Sample Location


←68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE


FIGURE 5

ROWAN AVENUE SCHOOL

NOTE: FIGURE NOT TO SCALE

FIGURE 6

AMANACER PRIMARY SCHOOL

Sample Location

←68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 7

EASTMAN AVENUE ELEMENTARY SCHOOL

Sample Location

←68' → Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 8

MAYWOOD ELEMENTARY

Sample Location

←68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE

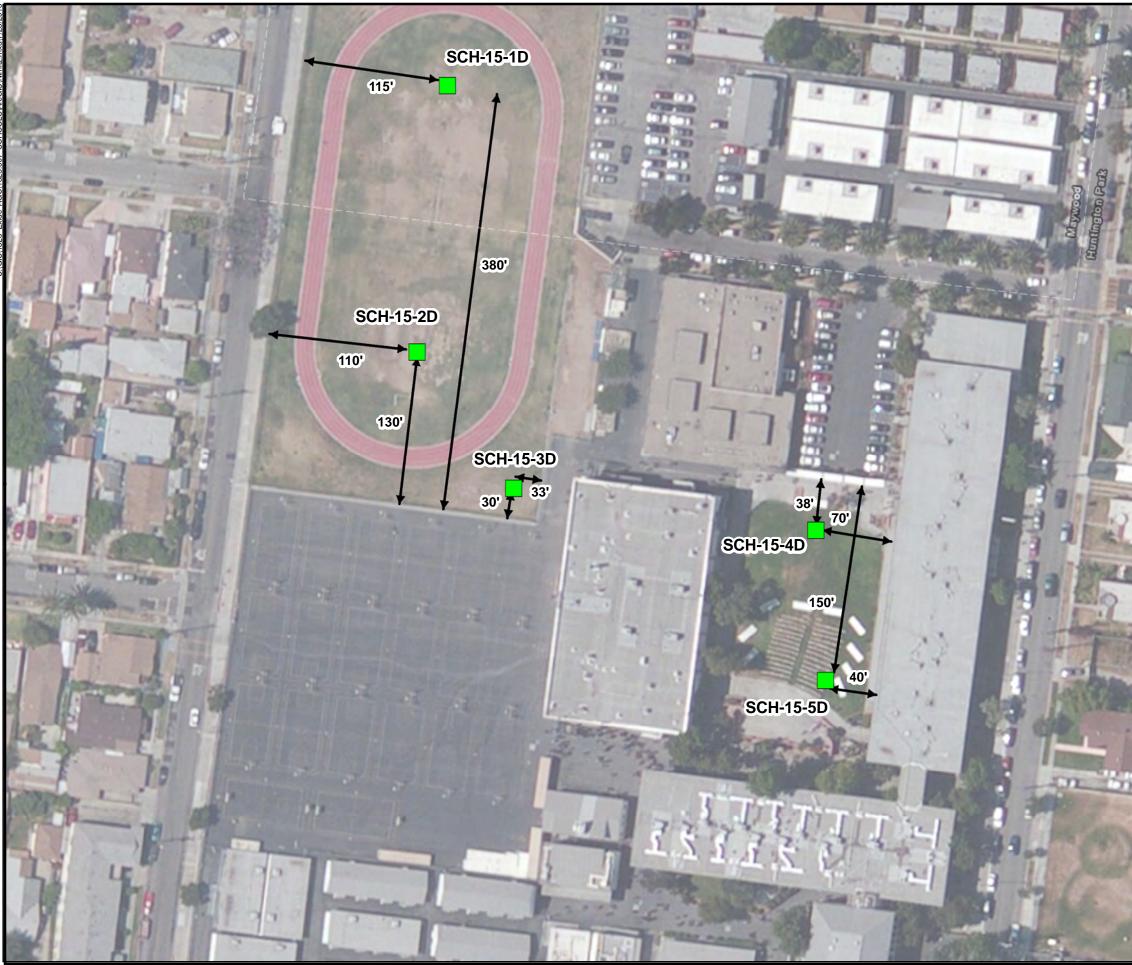
85'

5'

FIGURE 9

FISHBURN AVENUE MIDDLE SCHOOL AND CLEMENTE CHARTER SCHOOL

Sample Location


←68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 10

HUNTINGTON PARK ELEMENTARY SCHOOL

Sample Location

←68'→ Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 11

CHESTER W. NIMITZ MIDDLE SCHOOL

Sample Location

←68' → Distance in Feet

NOTE: FIGURE NOT TO SCALE

FIGURE 12

LOMA VISTA ELEMENTARY SCHOOL

WORK ORDER NUMBER: 15-07-0228

Calscience

ResultLink >

Email your PM >

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Advanced GeoServices Corporation Client Project Name: Exide Vernon Offsite / 2013-3007-09 Attention: Adam Doubleday 1055 Andrew Drive, Suite A West Chester, PA 19380-4293

Amande Porter

Approved for release on 07/20/2015 by: Amanda Porter Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🛟 eurofins

Calscience

Contents

	oject Name: ler Number:	Exide Vernon Offsite / 2013-3007-09 15-07-0228	
1	Work Or	der Narrative	3
2		ample Data	4 4
3	3.1 MS/	Control Sample Data	8 8 10
4	Sample	Analysis Summary	12
5	Glossary	of Terms and Qualifiers	13
6	Chain-of	-Custody/Sample Receipt Form	14

Work Order: 15-07-0228

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/06/15. They were assigned to Work Order 15-07-0228.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Advanced GeoServices Co	orporation		Date Re	ceived:			07/06/15
1055 Andrew Drive, Suite	A		Work O	rder:			15-07-0228
West Chester, PA 19380-4	4293		Prepara	tion:			EPA 3050E
			Method:				EPA 6010E
			Units:				mg/kg
Project: Exide Vernon Offs	site / 2013-3007-09					Pa	ige 1 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-06-01	15-07-0228-1-A	07/06/15 08:40	Solid	ICP 7300	07/08/15	07/10/15 00:42	150708L03
<u>Parameter</u>		<u>Result</u>		RL	DF	Qua	alifiers
Lead		29.2		0.478	0.957		
SCH-06-03	15-07-0228-2-A	07/06/15 08:43	Solid	ICP 7300	07/08/15	07/10/15 00:45	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		17.0		0.481	0.962		
SCH-06-06	15-07-0228-3-A	07/06/15 08:46	Solid	ICP 7300	07/08/15	07/10/15 00:45	150708L03
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		17.6		0.521	1.04		
SCH-06-12	15-07-0228-4-A	07/06/15 08:49	Solid	ICP 7300	07/08/15	07/10/15 00:46	150708L03
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		43.6		0.483	0.966		
SCH-06-18	15-07-0228-5-A	07/06/15 08:52	Solid	ICP 7300	07/08/15	07/10/15 00:47	150708L03
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		13.6		0.493	0.985		
SCH-07-01	15-07-0228-6-A	07/06/15 09:50	Solid	ICP 7300	07/08/15	07/10/15 00:48	150708L03
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		81.7		0.500	1.00		
SCH-07-03	15-07-0228-7-A	07/06/15 09:53	Solid	ICP 7300	07/08/15	07/10/15 00:48	150708L03
Parameter		<u>Result</u>		RL	DF	Qua	alifiers
Lead		87.3		0.518	1.04		
SCH-07-06	15-07-0228-8-A	07/06/15 09:56	Solid	ICP 7300	07/08/15	07/10/15 00:49	150708L03
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		81.5		0.498	0.995		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Advanced GeoServices Co	prooration		Date Re	ceived:			07/06/15
1055 Andrew Drive, Suite	•		Work Or	der:			15-07-0228
West Chester, PA 19380-4			Prepara	tion:			EPA 3050E
	200		Method:				EPA 6010E
			Units:				mg/kg
Project: Exide Vernon Offs	ite / 2013-3007-09		O million			Pa	ige 2 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-07-12	15-07-0228-9-A	07/06/15 09:58	Solid	ICP 7300	07/08/15	07/10/15 00:50	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		66.4		0.505	1.01		
SCH-07-18	15-07-0228-10-A	07/06/15 10:05	Solid	ICP 7300	07/08/15	07/10/15 00:50	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		17.1		0.510	1.02		
SCH-08-01	15-07-0228-11-A	07/06/15 11:00	Solid	ICP 7300	07/08/15	07/10/15 00:51	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		52.7		0.483	0.966		
SCH-08-03	15-07-0228-12-A	07/06/15 11:04	Solid	ICP 7300	07/08/15	07/10/15 00:54	150708L03
Parameter	·	Result		RL	DF	Qua	alifiers
Lead		37.9		0.515	1.03		
SCH-08-06	15-07-0228-13-A	07/06/15 11:08	Solid	ICP 7300	07/08/15	07/10/15 00:55	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		47.6		0.508	1.02		
SCH-08-12	15-07-0228-14-A	07/06/15 11:12	Solid	ICP 7300	07/08/15	07/10/15 00:55	150708L03
Parameter		Result	-	RL	DF	Qua	alifiers
Lead		75.6		0.521	1.04		
SCH-08-18	15-07-0228-15-A	07/06/15 11:16	Solid	ICP 7300	07/08/15	07/10/15 00:56	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		25.8		0.524	1.05		
SCH-09-01	15-07-0228-16-A	07/06/15 13:10	Solid	ICP 7300	07/08/15	07/10/15 00:57	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		68.6		0.510	1.02		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Advanced GeoServices C	orporation		Date Re	ceived:			07/06/1
1055 Andrew Drive, Suite	•		Work O	rder:			15-07-022
West Chester, PA 19380-			Prepara	tion:			EPA 3050
····, ····,			Method:				EPA 6010
			Units:				mg/kg
Project: Exide Vernon Offs	site / 2013-3007-09					Pa	ige 3 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-09-03	15-07-0228-17-A	07/06/15 13:14	Solid	ICP 7300	07/08/15	07/10/15 00:57	150708L03
Parameter		Result		RL	DF	Qua	alifiers
Lead		70.1		0.500	1.00		
SCH-09-06	15-07-0228-18-A	07/06/15 13:18	Solid	ICP 7300	07/08/15	07/10/15 00:58	150708L03
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Lead		112		0.500	1.00		
SCH-09-12	15-07-0228-19-A	07/06/15 13:22	Solid	ICP 7300	07/08/15	07/10/15 00:59	150708L03
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		52.6		0.510	1.02		
SCH-09-18	15-07-0228-20-A	07/06/15 13:26	Solid	ICP 7300	07/08/15	07/10/15 00:59	150708L03
<u>Parameter</u>		Result		RL	DF	Qua	alifiers
Lead		29.9		0.521	1.04		
SCH-10-01	15-07-0228-21-A	07/06/15 14:25	Solid	ICP 7300	07/08/15	07/10/15 01:00	150708L04
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		11.0		0.485	0.971		
SCH-10-03	15-07-0228-22-A	07/06/15 14:28	Solid	ICP 7300	07/08/15	07/10/15 18:14	150708L04
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		13.8		0.493	0.985		
SCH-10-06	15-07-0228-23-A	07/06/15 14:32	Solid	ICP 7300	07/08/15	07/10/15 18:16	150708L04
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		13.1		0.478	0.957		
SCH-10-12	15-07-0228-24-A	07/06/15 14:35	Solid	ICP 7300	07/08/15	07/10/15 18:18	150708L04
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		16.2		0.498	0.995		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Advanced GeoServices Corporation	า		Date Rec	eived:			07/06/15
1055 Andrew Drive, Suite A			Work Ord		15-07-0228		
West Chester, PA 19380-4293			Preparatio	on:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: Exide Vernon Offsite / 2013	3-3007-09			Ра	ge 4 of 4		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-10-18	15-07-0228-25-A	07/06/15 14:40	Solid	ICP 7300	07/08/15	07/09/15 17:11	150708L04
Parameter		Result	Ē	<u>RL</u>	DF		lifiers
<u>Parameter</u> Lead		-	-	<u>RL</u> 0.495	<u>DF</u> 0.990		lifiers
	097-01-002-21388	<u>Result</u> 10.2	-				lifiers 150708L03
Lead	097-01-002-21388	<u>Result</u> 10.2	Solid	0.495	0.990	Qua 07/10/15 13:10	
Lead Method Blank	097-01-002-21388	Result 10.2 N/A	Solid	0.495 ICP 7300	0.990 07/08/15	Qua 07/10/15 13:10	150708L03
Lead Method Blank Parameter	097-01-002-21388	Result 10.2 N/A Result ND	Solid	0.495 ICP 7300 RL	0.990 07/08/15 DF	Qua 07/10/15 13:10	150708L03
Lead Method Blank Parameter Lead		Result 10.2 N/A Result ND	Solid [[[[[[[]]] []]] []]] []]] []]]	0.495 ICP 7300 RL 0.505	0.990 07/08/15 DF 1.01	Qua 07/10/15 13:10 Qua 07/09/15 17:04	150708L03 Ilifiers

Analytical Report

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	orporation			Date F	eceived	:				07/06/15
1055 Andrew Drive, Suite A				Work (Order:				15	5-07-0228
West Chester, PA 19380-4293				Prepar	Preparation:				El	PA 3050B
					d:				El	PA 6010B
Project: Exide Vernon Offsite / 2013-3007-09 Page 1 of 2										
Quality Control Sample ID	Туре		Matrix	Insti	ument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
SCH-06-01										onnation
	Sample		Solid	ICP	7300	07/08/15	07/10/15 (00:42	150708S03	
SCH-06-01	Sample Matrix Spike		Solid Solid		7300 7300	07/08/15 07/08/15			150708S03 150708S03	
SCH-06-01 SCH-06-01	•	uplicate		ICP			07/10/15 (00:41		
	Matrix Spike Matrix Spike Du Sample	uplicate Spike Added	Solid	ICP	7300	07/08/15 07/08/15	07/10/15 (00:41	150708S03 150708S03	Qualifiers

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	Corporation		Date F	Received	:				07/06/15		
1055 Andrew Drive, Suite	1055 Andrew Drive, Suite A				Work Order:				15-07-0228		
West Chester, PA 19380-4293				Preparation:				EPA 3050B			
			Metho	d:				E	PA 6010B		
Project: Exide Vernon Off	site / 2013-3007-09							Page 2	2 of 2		
Quality Control Sample ID	Туре	Matrix	Inst	rument	Date Prepared	Date Analy	yzed	MS/MSD Ba	tch Number		
SCH-10-18	Sample	Solid	ICP	7300	07/08/15	07/09/15 1	7:11	150708S04			
SCH-10-18	Matrix Spike	Solid	ICP	7300	07/08/15	07/09/15 1	7:08	150708S04			
SCH-10-18	Matrix Spike Dupli	cate Solid	ICP	7300	07/08/15	07/09/15 1	7:09	150708S04			
Parameter	<u>Sample Spil</u> <u>Conc.</u> <u>Ado</u>		<u>MS</u> %Rec.	<u>MSD</u> Conc.	MSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>		
Lead	10.23 25.0	00 35.37	101	37.18	108	75-125	5	0-20			

Return to Contents

Advanced GeoServices Corporation	Date Received:	07/06/15
1055 Andrew Drive, Suite A	Work Order:	15-07-0228
West Chester, PA 19380-4293	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 1 of 2

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-21388	LCS	Solid	ICP 7300 0	07/08/15	07/10/15 13:13	150708L03
Parameter		Spike Added	Conc. Recovered	d <u>LCS %Re</u>	<u>c. %Rec.</u>	CL Qualifiers
Lead		25.00	24.85	99	80-120	

Advanced GeoServices Corporation	Date Received:	07/06/15
1055 Andrew Drive, Suite A	Work Order:	15-07-0228
West Chester, PA 19380-4293	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-21380	LCS	Solid	ICP 7300	07/08/15	07/09/15 17:06	150708L04
Parameter		Spike Added	Conc. Recovered	ed LCS %Re	<u>%Rec.</u>	CL Qualifiers
Lead		25.00	25.94	104	80-120)

Calscience

Work Order: 15-07-0228Page 1 of 1MethodExtractionChemist IDInstrumentAnalytical LocationEPA 6010BEPA 3050B771ICP 73001

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

🔅 eurofins

Calscience

Glossary of Terms and Qualifiers

Work Order: 15-07-0228

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. Х % Recovery and/or RPD out-of-range.

Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

> Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

> Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

> A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

1055 Andrew Dr. Suite A West Chester, PA 19380 tel 610.840.9100

ADVANCED GEOSERVICES CORP. CHAIN OF CUSTODY

S of S

Shipment #

Project # 2013-3007-09 **15-07-0228**

Shipment Tracking # courier pick-up Orop 945

Standard 5-Day 72-Hour 24-Hour

Lab Name/Location: Calscience, Garden Grove, CA

Turnaround Time (circle one) (

Project Name: Exide Vernon Offsite AGC Contact: Adam Doubleday

Deliverables (circle one) Results only Results/QC summary CLP-Like

		.	1		-						r		r	·		,		1				1	
	REMARKS																					07/06/2015	
sən	Preservati																					3	
																						15:32	
/SIS																							ime:
ANALYSIS	SEIVE																					Date/Time:_	Date/Time:
∢	09# 0109	X	X		$\overline{\mathbf{x}}$	\sim	\mathbf{X}	$\overline{}$	$\overline{\mathbf{N}}$		$\overline{\mathbf{x}}$			X	\mathbf{x}	X	\searrow		$\mathbf{\lambda}$	$\frac{1}{\lambda}$	Z		
JGLS	# of Contain	-			~ _	<u>, </u>						<u>``</u>	\sim					7				5	
	Field Filter											-	1									5	
	Matrix	\sim	S	5	Ċ	~	S	~ ^	\sim	S	\sim	5	\sim	5	5	\sim	S	5	\sim	5	5	ı.	
	Zample Ty (C or G)	S	J	υ	U С	S	ა	C	C	С С	J	J	S	J	C	0	C)	с)	C	C	С	2	
	Time	osyl	0843	94280	2849	0852	0950	0953	0936	<i>S</i> 560	5000	aoall	1103	1108	11:12	91:11	13:10.	13:14)3:K	22:81	13:26	JVC	
	Date	09/10/15	.)				_														$ \land \land$	Received By:	Received By:
	Sample ID	Scr1-06-01	SCH - 06 - 03	SCH-OC	SCN-06-12	SCN-06-18	SCX-67,01	SCN-07-03	Sch-07-06	SCH-07-12	Sc.N. 07-18	SCN-08-01	SCN-08-03	SCN-08-06	SCN-08-12	SCN-08-18	Sch-09-01	SCN-09-03	SCN-09-06	SCN-09-12	SCN-09-18	Relinquished By Mich HR	Relinquished By:
λĮu	O əsU daJ		2	3 6	Ч	3	9	ц	2	6	10	11	2	13	μ	151	9(17	ا لا	19	20	Ι	-

Preservative: 1-ice, 2- H₂SO₄, 3-HCl, 4-HNO₃, 5-NaOH, 6-ZnOAC Remarks: EZ - Exclusion Zone Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, Sld - Sludge, A - Air PA1325 AGC-Exide_Venon007_Offsite Soil Sampling/P

Date/Time:

Received By:_

Relinquished By:_

eΑ	80	
1055 Andrew Dr. Suite A	West Chester, PA 19380	
2	PA	8
νe	ter,	.91
Ndı	hes	tel 610.840.9100
55/	stc	610
9	Š	tel

ADVANCED GEOSERVICES CORP. CHAIN OF CUSTODY

Project # 2013-3007-09 Shipment # S

5-Day 72-Hour 24-Hour

Standard

Turnaround Time (circle one) (

Lab Name/Location: Calscience, Garden Grove, CA

Project Name: Exide Vernon Offsite AGC Contact: Adam Doubleday

977 da

med of 2

organo	Results/QC summary
# courier pick-up	e) Results only
hipment Tracking #	Deliverables (circle one) Results only (

CLP-Like

	REMARKS																					07/06/2.015		
sə	Preservativ																					22		
									$\left(\right)$													Ed Date/Time: 15:32	, , , ,	
ANALYSIS																						Time.	Time:	
ANAI	SEIAE 99#									$\left \right $												Date/	Date/Time:	
	, 9010 . FEVD	8	X	X	Х	X					\setminus											54	-	
ers	# of Contain	, , ,		(_	$\left(\right)$	-																	
pə	Field Filter											\square										.		
	Matrix	5	Ś	Ś	5	S																۱ ۱		
əd	Sample Ty (O ro O)	Ĵ	\mathcal{C}	J-11	υ	C			:					-								4	Å	
	Time	14.2S	14.28	02h/	14:55	anhl										×						J.C.	 	
	Date	51/90/12	, ¦ ,			1								\sim	A J	LJ						Received Rv.	Received By:>	
	Sample ID	SCN-10-01	SC1-10-03	2CN-10-QC	SCN-10-12	SCN-10-18										TW I	the second secon				0	Belinnuished Burn Rud Mr.	Relinquished By:	
ηλ	rO əsU daJ	21	22	23	24	25																		
		L			L, ,	L	L	L		I	I		L	L	L		L	L	1	L	- (l		

Preservative: 1-ice, 2-H₂SO₄, 3-HCl, 4-HNO₃, 5-NaOH, 6-ZnOAC Remarks: EZ - Exclusion Zone Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, Sld - Sludge, A - Air PAI325 AGC-Exide_Vernonk007_Offsite Soil Sampling/P

Page 15 of 16

Date/Time:

Received By:-

Relinquished By:

🔅 eurofins			R NUMBER: '		16 of 16 - <u>02</u>	
Calscience	SAMPLE RECEIPT	CHECKLIST	CC	OOLER	<u> </u>	F_0
CLIENT: Exide				E: 07 /		
TEMPERATURE: (Criteria: 0.0°C – Thermometer ID: SC5 (CF:-0.2°C); □ Sample(s) outside temperatur □ Sample(s) outside temperatur □ Sample(s) received at ambient te Ambient Temperature: □ Air □ Fil	Temperature (w/o CF): <u>24-6</u> e criteria (PM/APM contacted b e criteria but received on ice/ch emperature; placed on ice for tra	<pre>9°C (w/ CF): _2 py:) milled on same day of</pre>			d by:	
CUSTODY SEAL:CoolerI Present and IntactSample(s)I Present and Intact		□ Not Present ☑ Not Present	N/A	Checke Checke	d by: d by:	36 p17
SAMPLE CONDITION: Chain-of-Custody (COC) document COC document(s) received complet Sampling date Sampling t	te			Yes Z	No □ □	N/A
□ No analysis requested □ No Sampler's name indicated on COC Sample container label(s) consisten Sample container(s) intact and in go Proper containers for analyses requ	nt with COC			1010		
Sufficient volume/mass for analyses Samples received within holding tim Aqueous samples for certain and	ne					
□ pH □ Residual Chlorine □ Proper preservation chemical(s) no Unpreserved aqueous sample(s	ted on COC and/or sample con) received for certain analyses					0
□ Volatile Organics □ Total Me Container(s) for certain analysis fre □ Volatile Organics □ Dissolve □ Carbon Dioxide (SM 4500) □	e of headspace ed Gases (RSK-175) □ Dissol	ved Oxygen (SM 4	500)			Ø
Tedlar™ bag(s) free of condensatio	· · ·	• •				ъ
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOA □ 125PBznna □ 250AGB □ 250C □ 500PB □ 1AGB □ 1AGBna ₂ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16 Air: □ Tedlar™ □ Canister □ Sort	CGB □ 250CGBs □ 250PB □ □ 1AGBs □ 1PB □ 1PBna □ SozCGJ □ Sleeve () □ E bent Tube □ PUF □	□ 125AGB □ 125A □ 250PBn □ 500A(I □ EnCores [®] () □ Other Matrix (GB □ 500AGJ □] TerraCores [®] (): □	GBp [] 1	I25PB \GJs Ø2	
Container: A = Amber, B = Bottle, C = 0 Preservative: b = buffered, f = filtered, I s = H ₂ SO ₄ , u = ultra-pure			PO ₄ , Labeleo		d by: <u>}0</u>	e.

WORK ORDER NUMBER: 15-07-0294

Calscience

ResultLink >

Email your PM >

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Advanced GeoServices Corporation Client Project Name: Exide Vernon Offsite / 2013-3007-09 Attention: Adam Doubleday 1055 Andrew Drive, Suite A West Chester, PA 19380-4293

Amande Porter

Approved for release on 07/21/2015 by: Amanda Porter Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🔅 eurofins

Calscience

Contents

	ect Name: er Number:	Exide Vernon Offsite / 2013-3007-09 15-07-0294	
1	Work Orc	ler Narrative	3
2	2.1 EPA	mple Data	4 4 9
3	3.1 MS/N	ontrol Sample Data	10 10 13
4	Sample A	analysis Summary.	16
5	Glossary	of Terms and Qualifiers	17
6	Chain-of-	Custody/Sample Receipt Form	18

Work Order: 15-07-0294

Page 1 of 1

Return to Contents

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/07/15. They were assigned to Work Order 15-07-0294.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sieved samples were processed using #60 sieve prior to analysis.

Advanced GeoServices Cor	poration		Date Re		07/07/1		
1055 Andrew Drive, Suite A			Work Or	der:			15-07-0294
West Chester, PA 19380-42	.93		Prepara	tion:			EPA 3050
			Method:				EPA 6010
			Units:				mg/kg
Project: Exide Vernon Offsit	e / 2013-3007-09					Pa	age 1 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-11-01	15-07-0294-1-A	07/07/15 09:00	Solid	ICP 7300	07/08/15	07/09/15 23:29	150708L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		155		0.500	1.00		
SCH-11-03	15-07-0294-2-A	07/07/15 09:03	Solid	ICP 7300	07/08/15	07/09/15 23:30	150708L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		207		0.508	1.02		
SCH-11-06	15-07-0294-3-A	07/07/15 09:06	Solid	ICP 7300	07/08/15	07/09/15 23:32	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		44.6		0.524	1.05		
SCH-11-12	15-07-0294-4-A	07/07/15 09:09	Solid	ICP 7300	07/08/15	07/09/15 23:33	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		43.6		0.515	1.03		
SCH-11-18	15-07-0294-5-A	07/07/15 09:12	Solid	ICP 7300	07/08/15	07/09/15 23:35	150708L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		15.6		0.513	1.03		
SCH-12-01	15-07-0294-6-A	07/07/15 10:20	Solid	ICP 7300	07/08/15	07/09/15 23:36	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		12.4		0.508	1.02		
SCH-12-03	15-07-0294-7-A	07/07/15 10:25	Solid	ICP 7300	07/08/15	07/09/15 23:41	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		19.0		0.493	0.985		
SCH-12-06	15-07-0294-8-A	07/07/15 10:30	Solid	ICP 7300	07/08/15	07/09/15 23:43	150708L01
Parameter		Result		RL	DF	<u>Qua</u>	alifiers

Advanced GeoServices Corporation	tion		Date Re		07/07/1		
1055 Andrew Drive, Suite A			Work Or	rder:			15-07-029
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050
			Method:				EPA 6010
			Units:				mg/kg
Project: Exide Vernon Offsite / 20	013-3007-09					Pa	ige 2 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-12-12	15-07-0294-9-A	07/07/15 10:35	Solid	ICP 7300	07/08/15	07/09/15 23:45	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		27.1		0.500	1.00		
SCH-12-18	15-07-0294-10-A	07/07/15 10:40	Solid	ICP 7300	07/08/15	07/09/15 23:46	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		12.7		0.481	0.962		
SCH-13-01	15-07-0294-11-A	07/07/15 10:55	Solid	ICP 7300	07/08/15	07/09/15 23:48	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		88.1		0.490	0.980		
SCH-13-03	15-07-0294-12-A	07/07/15 11:00	Solid	ICP 7300	07/08/15	07/09/15 23:49	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		74.8		0.526	1.05		
SCH-13-06	15-07-0294-13-A	07/07/15 11:05	Solid	ICP 7300	07/08/15	07/09/15 23:51	150708L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Lead		70.4		0.505	1.01		
SCH-13-12	15-07-0294-14-A	07/07/15 11:10	Solid	ICP 7300	07/08/15	07/09/15 23:53	150708L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		45.3		0.513	1.03		
SCH-13-18	15-07-0294-15-A	07/07/15 11:15	Solid	ICP 7300	07/08/15	07/09/15 23:54	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		22.1		0.500	1.00		
SCH-14-01	15-07-0294-16-A	07/07/15 12:10	Solid	ICP 7300	07/08/15	07/09/15 23:56	150708L01
Daramatar		Result		RL	DF	Qua	alifiers
<u>Parameter</u>							

Advanced GeoServices Corpo	dvanced GeoServices Corporation						07/07/15
1055 Andrew Drive, Suite A			Work O	rder:			15-07-0294
West Chester, PA 19380-4293	3		Prepara	tion:			EPA 3050E
,			Method:		EPA 6010E		
			Units:				mg/kg
Project: Exide Vernon Offsite /	2013-3007-09					Pa	age 3 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-14-03	15-07-0294-17-A	07/07/15 12:14	Solid	ICP 7300	07/08/15	07/10/15 00:01	150708L01
Parameter		Result		RL	DF	Qua	alifiers
Lead		19.4		0.493	0.985		
SCH-14-06	15-07-0294-18-A	07/07/15 12:18	Solid	ICP 7300	07/08/15	07/10/15 00:03	150708L01
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		17.7		0.513	1.03		
SCH-14-12	15-07-0294-19-A	07/07/15 12:22	Solid	ICP 7300	07/08/15	07/10/15 00:04	150708L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		16.5		0.505	1.01		
SCH-14-18	15-07-0294-20-A	07/07/15 12:26	Solid	ICP 7300	07/08/15	07/10/15 00:06	150708L01
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		19.4		0.518	1.04		
SCH-15-01	15-07-0294-21-A	07/07/15 13:45	Solid	ICP 7300	07/08/15	07/09/15 22:21	150708L02
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		43.1		0.518	1.04		
SCH-15-03	15-07-0294-22-A	07/07/15 13:50	Solid	ICP 7300	07/08/15	07/10/15 00:26	150708L02
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		52.2		0.495	0.990		
SCH-15-06	15-07-0294-23-A	07/07/15 13:55	Solid	ICP 7300	07/08/15	07/10/15 00:26	150708L02
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		33.4		0.526	1.05		
SCH-15-12	15-07-0294-24-A	07/07/15 14:00	Solid	ICP 7300	07/08/15	07/10/15 00:27	150708L02
Parameter		Result		RL	DF	Qua	alifiers
		23.5		0.524	1.05		

Advanced GeoServices Corpo	oration		Date Re	07/07/15			
1055 Andrew Drive, Suite A			Work O	rder:			15-07-0294
West Chester, PA 19380-4293	3		Prepara		EPA 3050B		
			Method:				EPA 6010B
			Units:				mg/kg
Project: Exide Vernon Offsite	/ 2013-3007-09					Pa	age 4 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-15-18	15-07-0294-25-A	07/07/15 14:05	Solid	ICP 7300	07/08/15	07/10/15 00:28	150708L02
Parameter	·	Result		RL	DE	Qua	alifiers
Lead		16.6		0.524	1.05		
SCH-16-01	15-07-0294-26-A	07/07/15 14:45	Solid	ICP 7300	07/08/15	07/10/15 00:28	150708L02
Parameter	·	Result		RL	DF	Qua	alifiers
Lead		39.5		0.485	0.971		
SCH-16-03	15-07-0294-27-A	07/07/15 14:50	Solid	ICP 7300	07/08/15	07/10/15 00:29	150708L02
Parameter	·	Result		<u>RL</u>	DF	Qua	alifiers
Lead		42.1		0.495	0.990		
SCH-16-06	15-07-0294-28-A	07/07/15 14:55	Solid	ICP 7300	07/08/15	07/10/15 00:30	150708L02
Parameter		Result		RL	DF	Qua	alifiers
Lead		70.7		0.505	1.01		
SCH-16-12	15-07-0294-29-A	07/07/15 14:58	Solid	ICP 7300	07/08/15	07/10/15 00:30	150708L02
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Lead		48.0		0.485	0.971		
SCH-16-18	15-07-0294-30-A	07/07/15 15:03	Solid	ICP 7300	07/08/15	07/10/15 00:31	150708L02
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		18.4		0.510	1.02		
SCH-11-01 (sieve)	15-07-0294-33-A	07/07/15 09:00	Solid	ICP 7300	07/08/15	07/10/15 00:32	150708L02
	ieved prior to preparation / a		ent instruc				alifiara
<u>Parameter</u> Lead		<u>Result</u> 101		<u>RL</u> 0.515	<u>DF</u> 1.03	<u>Qua</u>	alifiers
LGau		101		0.010	1.03		

		Result		<u>RL</u>	DE		alifiers
	097-01-002-21383	N/A	Solid	ICP 7300	07/08/15	07/09/15 22:01	150708L02
		ND		0.503	1.01		
		Result		RL	DE		alifiers
	097-01-002-21384	N/A	Solid	ICP 7300	07/08/15	07/09/15 23:22	150708L01
		40.7		0.493	0.985		
•		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
The sample was sieved p	 prior to preparation / a	-	ent instruct	ions. See case na	rrative for spec		
)	15-07-0294-38-A	07/07/15 14:45	Solid	ICP 7300	07/08/15	07/10/15 00:37	150708L02
		41.3		0.524	1.05		
		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
The sample was sieved p	prior to preparation / a	inalysis per cli	ent instruct	ions. See case na	rrative for speci	ific procedure.	
•	15-07-0294-37-A	07/07/15 13:45	Solid	ICP 7300	07/08/15	07/10/15 00:37	150708L02
		24.2		0.500	1.00		
		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
The sample was sieved p	prior to preparation / a	analysis per cli	ent instruct	ions. See case na	rrative for speci		
)	15-07-0294-36-A	07/07/15 12:10	Solid	ICP 7300	07/08/15	07/10/15 00:36	150708L02
		76.0		0.505	1.01		
		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
The sample was sieved p	prior to preparation / a	analysis per cli	ent instruct	ions. See case na	rrative for speci	ific procedure.	
•	15-07-0294-35-A	07/07/15 10:55	Solid	ICP 7300	07/08/15	07/10/15 00:35	150708L02
		15.4		0.478	0.957		
		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
The sample was sieved p	prior to preparation / a		ent instruct	ions. See case na	rrative for spec		
)	15-07-0294-34-A	07/07/15 09:12	Solid	ICP 7300	07/08/15	07/10/15 00:35	150708L02
nber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
/ernon Offsite / 2013	3-3007-09					Pa	age 5 of 5
				mg/ł			
			Method:		EPA 6010		
PA 19380-4293			Preparat	ion:			EPA 3050
Drive, Suite A			Work Or	der:			15-07-029
	Prive, Suite A PA 19380-4293 //ernon Offsite / 2013 hber The sample was sieved p The sample was sieved p The sample was sieved p The sample was sieved p	PA 19380-4293 /ernon Offsite / 2013-3007-09 ber Lab Sample Number 15-07-0294-34-A The sample was sieved prior to preparation / a The sample was sieved prior to preparation / a The sample was sieved prior to preparation / a The sample was sieved prior to preparation / a The sample was sieved prior to preparation / a The sample was sieved prior to preparation / a	Prive, Suite A PA 19380-4293 / / / / / / / / / / / / / / / / / / /	vrive, Suite A Work Or PA 19380-4293 Preparat Method: Units: /ernon Offsite / 2013-3007-09 Date/Time Number Date/Time Iber Lab Sample Number Date/Time Matrix Of/07/15 Solid 09:12 The sample was sieved prior to preparation / analysis per client instruct Result 15.4 Solid 07/07/15 Solid 07/07/15 Solid 15.07-0294-35-A 15.4 07/07/15 Solid 15.07 The sample was sieved prior to preparation / analysis per client instruct Result 76.0 Solid 13:45 Solid 14:45 Solid 14:45 Solid 14:45 So	PA 19380-4293 Work Order: Preparation: Method: Units: /ernon Offsite / 2013-3007-09 Date/Time Collected Matrix Instrument /deer Lab Sample Number Date/Time Number Matrix Instrument /deer Lab Sample Number Date/Time Number Matrix Instrument /deer Lab Sample Date/Time Name RL O.478 /deer 15-07-0294-36-A 07/07/15 Solid ICP 7300 /dee 15-07-0294-37-A 07/07/15 Solid ICP 7300 /dee 15-07	Inive, Suite A Work Order: PA 19380-4293 Preparation: Method: Units: /ernon Offsite / 2013-3007-09 Method: Ibber Lab Sample Date/Time Matrix Instrument Date Ibber Lab Sample Date/Time Matrix Instrument Date Ibber Lab Sample Date/Time Matrix Instrument Date The sample was sieved prior to preparation / analysis per client instructions. See case narrative for speci Result RL DF 15-07-0294-36-A 07/07/15 Solid ICP 7300 07/08/15 The sample was sieved prior to preparation / analysis per client instructions. See case narrative for speci Result RL DF 76.0 0.505 1.01 DF DF DF DF 76.0 0.500 1.00 DF DF DF DF 76.0 0.500 1.00 DF DF DF DF DF The sample was sieved prior to preparation / analysis per client instructions. See case narrative for speci Result RL DF DF DF D	Work Order: PA 19380-4293 Work Order: Preparation: Method: Units: Preparation: Method: Units: Prepared Analyzed Date/Time Date/Time Date/Time Collected Matrix Instrument Prepared Analyzed Analyz

Advanced GeoServices Corporation	n		Date Recei	ved:	07/07/15			
1055 Andrew Drive, Suite A			Work Order	r:		15-07-0294		
West Chester, PA 19380-4293			Preparation	1:	EPA 3010A Total			
			Method:				EPA 6010B	
			Units:				mg/L	
Project: Exide Vernon Offsite / 2013	3-3007-09					Ра	ge 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
EB-070615	15-07-0294-31-A	07/06/15 15:45	Aqueous	ICP 7300	07/08/15	07/10/15 23:39	150708LA7	
Parameter		Result	RL	:	DF	Qua	lifiers	
Lead		ND	0.0	0100	1.00			
EB-070715	15-07-0294-32-A	07/07/15 16:30	Aqueous	ICP 7300	07/08/15	07/10/15 23:42	150708LA7	
Parameter		Result	RL		DF	Qua	lifiers	
Lead		ND	0.0	0100	1.00			
Method Blank	097-01-003-15195	N/A	Aqueous	ICP 7300	07/08/15	07/09/15 12:41	150708LA7	
Parameter		Result	RL		DF	Qua	lifiers	
Lead		ND	0.0)100	1.00			

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	orporation	Date R	Received	:		07/07/15							
1055 Andrew Drive, Suite	• A			Work (Order:			15-07-0294					
West Chester, PA 19380-	4293			Prepar	ation:				EI	PA 3050B			
		Metho	d:				El	PA 6010B					
Project: Exide Vernon Off	site / 2013-3007-	09							Page 1	of 3			
Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	tch Number			
SCH-11-01	Sample												
	Sample		Solid	ICP	7300	07/08/15	07/09/15 2	23:29	150708S01				
SCH-11-01	Matrix Spike		Solid Solid		7300 7300	07/08/15 07/08/15			150708S01 150708S01				
SCH-11-01 SCH-11-01	•	ouplicate		ICP			07/09/15 2	23:25					
	Matrix Spike Matrix Spike D	uplicate Spike Added	Solid	ICP	7300	07/08/15 07/08/15	07/09/15 2	23:25	150708S01 150708S01	Qualifiers			

Return to Contents

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	Corporation	Date F	Received	:		07/07/15								
1055 Andrew Drive, Suite	A .			Work (Order:			15-07-0294						
West Chester, PA 19380-	·4293			Prepa	ration:				El	PA 3050B				
	Metho	d:				El	PA 6010B							
Project: Exide Vernon Off	site / 2013-3007	-09							Page 2	of 3				
Quality Control Sample ID	Туре		Matrix	Instrume		Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number				
SCH-15-01	Sample		Solid	ICP	7300	07/08/15	07/09/15	22:21	150708S02					
SCH-15-01														
	Matrix Spike		Solid	ICP	7300	07/08/15	07/09/15	22:17	150708S02					
SCH-15-01	Matrix Spike Matrix Spike I	Duplicate	Solid Solid		7300 7300	07/08/15 07/08/15								
SCH-15-01 Parameter	•	Duplicate Spike Added				07/08/15			150708S02 150708S02	Qualifiers				

Return to Contents

Advanced GeoServices C	orporation	Date	Received:			07/07/15						
1055 Andrew Drive, Suite	A	Work	Order:			15-07-029						
West Chester, PA 19380-	4293	Prepa	aration:		EPA 3010A T							
		Meth	od:				E	PA 6010B				
Project: Exide Vernon Off	site / 2013-300	7-09							Page 3	3 of 3		
Quality Control Sample ID	Туре	Туре М			strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number		
15-07-0357-1	Sample		Aqueous	Aqueous ICP 7300 07/0			07/10/15	14:31	150708SA7			
15-07-0357-1	Matrix Spike					07/08/15	07/09/15	12:50	150708SA7			
15-07-0357-1	Matrix Spike	Duplicate	Aqueous	s IC	P 7300	07/08/15	07/09/15	12:52	150708SA7			
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>		
Lead	ND	0.5000	0.6132 123 0.5993			120	84-120	2	0-7	3		

Return to Contents

Advanced GeoServices Corporation	Date Received:	07/07/15
1055 Andrew Drive, Suite A	Work Order:	15-07-0294
West Chester, PA 19380-4293	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 1 of 3

Quality Control Sample ID	Туре	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-21384	LCS	Solid	ICP 7300	07/08/15	07/09/15 23:24	150708L01
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	<u>ec. %Rec.</u>	CL Qualifiers
Lead		25.00	26.14	105	80-120)

Advanced GeoServices Corporation	Date Received:	07/07/15
1055 Andrew Drive, Suite A	Work Order:	15-07-0294
West Chester, PA 19380-4293	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	strument Date Prepared		LCS Batch Number
097-01-002-21383	LCS	Solid	ICP 7300	07/08/15	07/09/15 22:03	150708L02
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	<u>ec. %Rec.</u>	CL Qualifiers
Lead		25.00	26.24	105	80-120)

Advanced GeoServices Corporation	Date Received:	07/07/15
1055 Andrew Drive, Suite A	Work Order:	15-07-0294
West Chester, PA 19380-4293	Preparation:	EPA 3010A Total
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 3 of 3

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
097-01-003-15195	LCS	Aqueous	ICP 7300	07/08/15	07/09/15 12:44	150708LA7
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	<u>ec. %Rec.</u>	CL Qualifiers
Lead		0.5000	0.5527	111	80-120)

Calscience

Sample Analysis Summary Report

Work Order: 15-07-0294				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3010A Total	771	ICP 7300	1
EPA 6010B	EPA 3050B	771	ICP 7300	1

Return to Contents

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Page 1 of 1

1

Calscience

Work Order: 15-07-0294

Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).

Glossary of Terms and Qualifiers

- J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- JA Analyte positively identified but quantitation is an estimate.
- LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME
- ND Parameter not detected at the indicated reporting limit.
- Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Х % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

1055 Andrew Dr. Suite A West Chester, PA 19380 tel 610.840.9100

ADVANCED GEOSERVICES CORP. **CHAIN OF CUSTODY**

Deliverables (circle one) Results only Shipment Tracking # courier pick-up Shipment # 306 p I Project # 2013-3007-09

Standard 5-Day 72-Hour 24-Hour

Lab Name/Location: Calscience, Garden Grove, CA

Turnaround Time (circle one)

Project Name: Exide Vernon Offsite AGC Contact: Adam Doubleday

15-07-0294

Results/QC summary CLP-Like

- 0.0

					met	mple	\$															Р	ag	e 1	80
	REMARKS	23				Helusel - 4 point Sam	×۴					35					36					1.21) 1.22)	> 10.20		
sə	Preservativ					 																220	10011		
ANALYSIS	SEIVE													jų į								and char	ate/Time: 1/	Date/Time:	Date/Time:
AN	#00 010 FEVD	\sim						*		 					۰ 									Ď	D
GLS	nietnoD fo #	-																	F	\vdash		1221)		
pə	Field Filter	X	<u>م</u>																		\Box				
<u> </u>	xitteM	S									POPOSISCHE										\overline{V}	د د			
	VT signs2 (O or O)	0																					A V	\$	
	Time	900	903	906	909	216	1020	1025	1030)035	10:10	5501.	0011	105	0111	2	1210	1214	1218	2221	9221	, (;	` .'
	Date	7-7-15																			$\overline{\mathbf{v}}$	-	- Received By:	_Received By:_	Received By:
	Sample ID	2CH - 11 - 0	SCH - 11 - 03	SCH-11-06	SCH-11-12	SCH-11-18	SCH - (2-0)	SCH -1			1	1	[SCH-13-12	-13-1	5CH - 14-01		SCH		ScH - 14 - 18	And How Alter Alecon	Relinquished By:	Relinquished By:	Relinquished By:
λĮ	rO əsU ds.I		2	ц	4	h	Q		Ċo	G	ŝ	-	12	8	7	5	3	E	è -	õ	20				

Preservative: 1-ice, 2-H₂SO₄, 3-HCl, 4-HNO₃, 5-NaOH, 6-ZnOAC Remarks: EZ - Exclusion Zone Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, Sld - Sludge, A - Air PA1325 AGC-Exide_Venon007_Offsite Soil Samplingth

2 of 2				1	- - 1			[1			۱ 	305 P T							7	Pa	ige 1	9 of 2
	Results/QC summary CLP-Like	REMARKS	£2			38				Taken 7/6/15 and	5	WITH Shipment #305 P.T.								16:30		
	s/QC s	Preservatives										\setminus								Eeg S		
	Results																			E/E		
	×	SEIVE ANALYSIS #60 #											\setminus							Date/Time: 3/3/by S	Date/Time:	Date/Time:
	ırier pick-up Results only	ZEIAE AN 940 AN	×			\times				Y			\backslash							Date	Date	Date
	cor	9010 ГЕУД	λ -						\rightarrow	\times	\times									Λ.		
Ŀ.		# of Containers							~	~	_									5		
COR)13-3(racki s (circ	Field Filtered	א∽						\rightarrow	×	$\stackrel{\scriptstyle \times}{\scriptstyle \alpha}$								_			
CES ODY	it # 20 lent # lent T rable	Matrix	5-		$\downarrow \downarrow$		+		\rightarrow	Aß	AQ		_		$\left\{ + \right\}$		+	_				
ERVI	Project # 2013-3007-09 Shipment # Shipment Tracking # co Deliverables (circle one)	Sample Type (C or G)	U-	┝╌┼╌					\geq	ઝ	শ									{		
ADVANCED GEOSERVICES CORP. CHAIN OF CUSTODY		Time	1345 1350	1355	14105		1450	1458	1503	1545	1630			Ţ	-						<u>, U</u>	
ADVANC CJ	our 24-Hour	Date	7-7-15						Ý	-	7-7-15				NOC NOC	ela				Received By:	Received By:	Received By:
1055 Andrew Dr. Suite A West Chester, PA 19380 tel 610.840.9100	Project Name: Exide Vernon Offsite AGC Contact: Adam Doubleday Lab Name/Location: Calscience, Garden Grove, CA Turnaround Time (circle one) Standard 5-Day 72-Hour	Sample ID	564-15-01 564-15-03	CH-15	151	Sch	SCH - 16 - 03 SCH - 16 - 06	scH - 1	5CH-16-18	EB-070615	FB - 070715	1							1 / Minest	Relinquished By Prof Age	Relinquished By:	Relinquished By:
1055 / West C tel 610.	Projo AGC Lab Turn	Van Use Only	22	25		d d	1 N	29	30-	ŝ	N L	ג ג							Ţ			

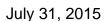
Preservative: 1-ice, 2-H₂SO₄, 3-HCl, 4-HNO₃, 5-NaOH, 6-ZnOAC Remarks: EZ - Exclusion Zone Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, Sld - Sludge, A - Air PN1325 AGC-Exide_Vennon007_Ofisite Soil Sampling/P

Return to Contents

Page 19 of 20

seurofins			WORK ORDER	NUMBER:	-	e 20 of '	
••	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLER	1	OF _/
CLIENT:	lide	:			te: 07 /		
Thermometer ID: So Sample(s) out Sample(s) out Sample(s) receiv	C5 (CF:-0.2°C); Te side temperature o side temperature o ed at ambient temp	0°C, not frozen except sedim emperature (w/o CF): <u>/6 - 7</u> criteria (PM/APM contacted b criteria but received on ice/ch perature; placed on ice for tra	└°C (w/ CF):/ y:) illed on same day c		Blank E		
Ambient Temperatu					Checke	u by	
	esent and Intact esent and Intact	 Present but Not Intact Present but Not Intact 	Not Present	□ N/A □ N/A	Checke Checke		
SAMPLE CONDITI	ON:				Yes	No	N/A
	•	received with samples	•				
					. 🖌		
		e 🛛 Matrix 🖾 Number of c					
•	•	elinquished D No relinquish					
•							
		with COC					
Sample container(s) intact and in good	d condition			- The		,
Proper containers for	or analyses reques	sted	•••••••••••••••••••••••••••••••••••••••			Z	
Sufficient volume/m	ass for analyses re	equested		•••••	. 1		
		· · · · · · · · · · · · · · · · · · ·			. д		
		ses received within 15-minut					
		ssolved Sulfide Dissolved					
Proper preservation	n chemical(s) noted	d on COC and/or sample con	tainer				
Unpreserved aq	ueous sample(s) re	eceived for certain analyses					
•		Is Dissolved Metals					
		of headspace			. 🗆		
		Gases (RSK-175) 🛛 Dissol					
	•	Ferrous Iron (SM 3500) □ ⊢					
Tedlar™ bag(s) free	e of condensation	· · · · · · · · · · · · · · · · · · ·		•••••••••	. 🗆		
CONTAINER TYPE	:		(Trip Blar	nk Lot Numb	er:)
•		a₂ □ 100PJ □ 100PJna₂ [
		B 🗆 250CGBs 🗆 250PB 🔎					
□ 500PB □ 1AGB	□ 1AGBna₂ □ 1	AGBs 🗆 1PB 🗆 1PBna 🗆	· D	0			7_
		CGJ 🗆 Sleeve () 🗖 E					t
Air: □ Tedlar™ □	Canister	nt Tube PUF D	_ Other Matrix (): []	_ □ _	
		ear, E = Envelope, G = Glass, J					6.5
Preservative: b = buff	fered, f = filtered, h =	HCI, n = HNO ₃ , na = NaOH, n a	a₂ = Na₂S₂O₃, p = H₃ F	O4, Labele	ed/Checke	d by: _	109
		nna = Zn(CH ₃ CO ₂) ₂ + NaOH			Reviewe	d by: _	836

ATTACHMENT 2


DTSC Review of July 2015 Soil Sampling Field Activities Report Los Angeles Unified School District Schools

July 31, 2015

Department of Toxic Substances Control

Matthew Rodriguez Secretary for Environmental Protection

Barbara A. Lee, Director 8800 Cal Center Drive Sacramento, California 95826-3200

Mr. Fredrick Ganster Exide Technologies 3000 Montrose Avenue Reading, Pennsylvania 19605

DTSC REVIEW OF REVISED JULY 2015 SOIL SAMPLING FIELD ACTIVITIES REPORT, LOS ANGELES UNIFIED SCHOOL DISTRICT SCHOOLS, EXIDE TECHNOLOGIES, VERNON, CA (CORRECTIVE ACTION CONSENT ORDER, DOCKET NUMBER P3-01 /02-010)

Dear Mr. Ganster:

The Department of Toxic Substances Control (DTSC) has reviewed the report titled "July 2015 Soil Sampling Field Activities Report, Los Angeles Unified School District Schools" (Report), which was prepared by Avocet Environmental Inc. (Avocet) for Advanced GeoServices Inc. (AGC), a consultant for Exide Technologies, Inc. (Exide). The Report is dated July 30, 2015 and was received by DTSC via email on July 31, 2015. The Report includes a cover letter prepared by AGC, also dated July 31, 2015, and addressed to Mr. Pat Shanen of the Los Angeles County Unified School District (LAUSD). The Report documents the sampling protocol and the results of laboratory analysis of soil samples collected from 11 LAUSD schools on July 6 and 7, 2015. DTSC staff was present during the stated July 6 and July 7, 2015 sampling work, and based on our review of the Report we have concluded that the sampling protocol as stated in the Report is accurate.

The results of laboratory analysis are provided in table format, attached to the AGC cover letter. DTSC cannot validate the tabulated information in the AGC cover letter since the actual laboratory data was not provided in the Report. Exide must provide DTSC with validated laboratory reports that verify the tabulated soil concentrations submitted without delay.

Notwithstanding the above, DTSC has reviewed the information provided in AGC's cover letter and has concluded that additional analysis for lead in soils is necessary to gain a better understanding for lead concentrations exceeding 80 parts-per-million for the composite samples. Based on the tables this additional analysis would include the samples from: SCH-07 (0-1", 1-3", and 3-6"); SCH-09 (3-6"); SCH-11 (0-1" and 1-3"); and SCH-13 (0-1"). The additional laboratory analysis should be performed on an expedited basis.

Edmund G. Brown Jr.

Governor

Mr. Frederick Ganster July 31, 2015 Page 2

Should you have any questions regarding this letter, please contact me at 916-255-3630 or <u>Peter.Ruttan@dtsc.ca.gov</u>.

Sincerely,

Peter Ruttan Project Manager Office of Permitting

cc: (via e-mail)

Mr. Chuck Giesige, Exide Mr. Tom Strang, Exide Mr. John Hogarth, Exide Ms. Christine Graessle, Exide Mr. Paul Stratman, AGC Ms. Barbara Forslund, AGC Mr. Pat Shanen, LAUSD Mr. Keith Kihara, DTSC Mr. Rizgar Ghazi, DTSC Ms. Suhasini Patel, DTSC Mr. Richard Sherwood, DTSC Mr. Todd Wallbom, DTSC Ms. Dina Kourda Ms. Yolanda Garza

ATTACHMENT 3

Select Discrete Sample Results

Received August 2015

Sample Location(s): <u>SCH-07 (composite)</u> Sample Date: <u>7/6/2015</u>

	-
Sample Depth	SCH-07
0-1"	81.7
1-3"	87.3
3-6"	81.5
6-12"	66.4
12-18"	17.1

Samples are composites All lead results reported in mg/kg

> Sample Location: SCH-07 (discrete) Sample Date: 7/6/2015

Sample Depth	1D	2D	3D	4D	5D
0-1"	35.7	213	170	70.3	66.4
1-3"	65.7	219	158	65.2	58.7
3-6"	78.9	217	171	68.7	23.4
6-12"	NA	NA	NA	NA	NA
12-18"	NA	NA	NA	NA	NA

All lead results reported in mg/kg

Sample Location(s): <u>SCH-09 (composite)</u> Sample Date: <u>7/6/2015</u>

Sample Depth	SCH-09
0-1"	68.6
1-3"	70.1
3-6"	112
6-12"	52.6
12-18"	29.9

Samples are composites All lead results reported in mg/kg

> Sample Location: SCH-09 (discrete) Sample Date: 7/6/2015

Sample Depth	1D	2D	3D	4D	5D
0-1"	NA	NA	NA	NA	NA
1-3"	NA	NA	NA	NA	NA
3-6"	105	19.5	139	163	17.5
6-12"	NA	NA	NA	NA	NA
12-18"	NA	NA	NA	NA	NA

All lead results reported in mg/kg

Sample Location(s): <u>SCH-11 (composite)</u> Sample Date: <u>7/7/2015</u>

Sample Depth	SCH-11
0-1"	155
1-3"	207
3-6"	44.6
6-12"	43.6
12-18"	15.6

Samples are composites All lead results reported in mg/kg

> Sample Location: SCH-11 (discrete) Sample Date: 7/7/2015

Sample Depth	1D	2D	3D	4D	5D
0-1"	481	688	80.8	31.9	29.4
1-3"	220	450	85.2	28.8	29.2
3-6"	NA	NA	NA	NA	NA
6-12"	NA	NA	NA	NA	NA
12-18"	NA	NA	NA	NA	NA

All lead results reported in mg/kg

Sample Location(s): <u>SCH-13 (composite)</u> Sample Date: <u>7/7/2015</u>

	-
Sample Depth	SCH-13
0-1"	88.1
1-3"	74.8
3-6"	70.4
6-12"	45.3
12-18"	22.1

Samples are composites All lead results reported in mg/kg

> Sample Location: SCH-13 (discrete) Sample Date: 7/7/2015

Sample Depth	1D	2D	3D	4D	5D
0-1"	183	144	25.8	29.8	37.9
1-3"	NA	NA	NA	NA	NA
3-6"	NA	NA	NA	NA	NA
6-12"	NA	NA	NA	NA	NA
12-18"	NA	NA	NA	NA	NA

All lead results reported in mg/kg

DATA VALIDATION SUMMARY Level I

Site Name:	Exide Vernon			La	aboratory:	Calscience
Project Number:	2013-3007			Ca	ase/Order/SDG #	15-08-0208
Sampling Date(s):	7/6 - 7/7/15					
Compound List:	Lead					
Method:	6010					
The following table ind	icates the data validatio	n criteria e	examine	ed, any pr	oblems identified	, and the QA action applied.
Data Validation Criteria	1:	Accept	FYI	Qualify	Comments	
Holding Times		Χ				
Blank Analysis		X				
Field Duplicate Analysi	S				NA	
Surrogate Recoveries					NA	
Matrix Spike Analysis ((MS/MSD)		X		Sample conc >4	X spike conc
Laboratory Control San		Χ				
Laboratory Duplicate A					NA	
Overall Assessment of	Data	Χ				
Other:						
General Comments:	cooler temp: 2.1					

Accept - No qualification required.

FYI - For your information only, no qualification necessary.

Qualify - Qualify as rejected, estimated or biased.

NR - Not Reviewed

NA - Not Applicable

fer WI QA Scientist_ 8/10/2015 Date

Advanced GeoServices Corporation	on		Date Re	ceived:			08/04/1
1055 Andrew Drive, Suite A			Work O	rder:			15-08-020
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050
			Method:				EPA 6010
			Units:				mg/k
Project: Exide Vernon Offsite / 207	13-3007-09					Pa	age 1 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-07-1D-01	15-08-0208-1-A	07/06/15 09:15	Solid	ICP 8300	08/04/15	08/05/15 12:27	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		35.7		0.495	0.990		
SCH-07-1D-03	15-08-0208-2-A	07/06/15 09:16	Solid	ICP 8300	08/04/15	08/05/15 12:28	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		65.7		0.488	0.976		
SCH-07-1D-06	15-08-0208-3-A	07/06/15 09:17	Solid	ICP 8300	08/04/15	08/05/15 12:31	150804L07
Parameter	·	Result		RL	DF	Qua	alifiers
Lead		78.9		0.518	1.04		
SCH-07-2D-01	15-08-0208-4-A	07/06/15 09:20	Solid	ICP 8300	08/04/15	08/05/15 12:31	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		213		0.503	1.01		
SCH-07-2D-03	15-08-0208-5-A	07/06/15 09:21	Solid	ICP 8300	08/04/15	08/05/15 12:32	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		219		0.515	1.03		
SCH-07-2D-06	15-08-0208-6-A	07/06/15 09:22	Solid	ICP 8300	08/04/15	08/05/15 12:33	150804L07
Parameter		Result	-	RL	DF	Qua	alifiers
Lead		217		0.508	1.02		
SCH-07-3D-01	15-08-0208-7-A	07/06/15 09:25	Solid	ICP 8300	08/04/15	08/05/15 12:34	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		170		0.493	0.985		
SCH-07-3D-03	15-08-0208-8-A	07/06/15 09:26	Solid	ICP 8300	08/04/15	08/05/15 12:35	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		158		0.495	0.990		

Return to Contents

Advanced GeoServices Corporation	า		Date Re	ceived:			08/04/15
1055 Andrew Drive, Suite A			Work O	rder:			15-08-0208
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050E
			Method				EPA 6010E
			Units:				mg/kg
Project: Exide Vernon Offsite / 2013	3-3007-09					Pa	ige 2 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-07-3D-06	15-08-0208-9-A	07/06/15 09:27	Solid	ICP 8300	08/04/15	08/05/15 12:36	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		171		0.483	0.966		
SCH-07-4D-01	15-08-0208-10-A	07/06/15	Solid	ICP 8300	08/04/15	08/05/15	150804L07
Deremeter		09:30		DI	DE	12:37	
Parameter		<u>Result</u> 70.3		<u>RL</u> 0.495	<u>DF</u> 0.990		<u>alifiers</u>
Lead		70.5		0.495	0.990		
SCH-07-4D-03	15-08-0208-11-A	07/06/15 09:31	Solid	ICP 8300	08/04/15	08/05/15 12:37	150804L07
Parameter		Result	-	RL	DF	Qua	alifiers
Lead		65.2		0.513	1.03		
SCH-07-4D-06	15-08-0208-12-A	07/06/15 09:32	Solid	ICP 8300	08/04/15	08/05/15 12:38	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		68.7		0.498	0.995		
SCH-07-5D-01	15-08-0208-13-A	07/06/15 09:35	Solid	ICP 8300	08/04/15	08/05/15 12:41	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		66.4		0.483	0.966		
SCH-07-5D-03	15-08-0208-14-A	07/06/15 09:36	Solid	ICP 8300	08/04/15	08/05/15 12:42	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		58.7		0.508	1.02		
SCH-07-5D-06	15-08-0208-15-A	07/06/15 09:37	Solid	ICP 8300	08/04/15	08/05/15 12:43	150804L07
Parameter		Result		RL	DF	<u>Qua</u>	alifiers
Lead		23.4		0.518	1.04		
SCH-09-1D-06	15-08-0208-16-A	07/06/15 12:27	Solid	ICP 8300	08/04/15	08/05/15 12:44	150804L07
Parameter		Result		RL	DF	<u>Qua</u>	alifiers

Return to Contents

08/04/15

mg/kg

15-08-0208

EPA 3050B EPA 6010B

QC Batch ID

150804L07

150804L07

150804L07

Page 3 of 5

Qualifiers

Qualifiers

Qualifiers

Advanced GeoServices Corporati	on		Date Re	ceived:					
1055 Andrew Drive, Suite A			Work Order:						
West Chester, PA 19380-4293			Prepara	tion:					
			Method:						
			Units:						
Project: Exide Vernon Offsite / 20	13-3007-09					Pa			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed			
SCH-09-2D-06	15-08-0208-17-A	07/06/15 12:32	Solid	ICP 8300	08/04/15	08/05/15 12:45			
Parameter		Result		RL	DF	Qu			
Lead		19.5		0.483	0.966				
SCH-09-3D-06	15-08-0208-18-A	07/06/15 12:38	Solid	ICP 8300	08/04/15	08/05/15 12:46			
Parameter		Result		<u>RL</u>	DF	Qu			
Lead		139		0.510	1.02				
SCH-09-4D-06	15-08-0208-19-A	07/06/15 12:42	Solid	ICP 8300	08/04/15	08/05/15 12:46			
Parameter		Result		<u>RL</u>	DF	<u>Qu</u>			
Lead		163		0.495	0.990				

Analytical Report

SCH-09-5D-06	15-08-0208-20-A	07/06/15 12:47	Solid	ICP 8300	08/04/15	08/05/15 12:47	150804L07
Parameter		Result	<u>F</u>	<u>RL</u>	DF	Qu	alifiers
Lead		17.5	C	.490	0.980		

SCH-11-1D-01	15-08-0208-21-A	07/07/15 08:20	Solid	ICP 8300	08/04/15	08/05/15 12:48	150804L08
Parameter		<u>Result</u>	<u>R</u>	<u>L</u>	DF	<u>Qu</u>	<u>alifiers</u>
Lead		481	0	.495	0.990		
SCH-11-1D-03	15-08-0208-22-A	07/07/15	Solid	ICP 8300	08/04/15	08/05/15	150804L08

		08:21				12:49	
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	alifiers
Lead		220	0	.505	1.01		
SCH-11-2D-01	15-08-0208-23-A	07/07/15	Solid	ICP 8300	08/04/15	08/05/15	150804L08

	08:25					12:52			
Parameter		<u>Result</u>	<u>R</u>	<u>RL</u> <u>DF</u>		Qu	alifiers		
Lead		688	0.481		0.962				
SCH-11-2D-03	15-08-0208-24-A	07/07/15 08:26	Solid	ICP 8300	08/04/15	08/05/15 12:53	150804L08		
Parameter		<u>Result</u>	<u>RL</u>		DF	Qualifiers			
Lead		450	0	.513	1.03				

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Advanced GeoServices Corpo	ration		Date Re	ceived:			08/04/1
1055 Andrew Drive, Suite A			Work O	rder:			15-08-0208
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050E
			Method:				EPA 6010
			Units:				mg/kg
Project: Exide Vernon Offsite /	2013-3007-09					Pa	age 4 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-11-3D-01	15-08-0208-25-A	07/07/15 08:30	Solid	ICP 8300	08/04/15	08/05/15 12:53	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		80.8		0.513	1.03		
SCH-11-3D-03	15-08-0208-26-A	07/07/15 08:31	Solid	ICP 8300	08/04/15	08/05/15 12:54	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		85.2		0.508	1.02		
SCH-11-4D-01	15-08-0208-27-A	07/07/15 08:35	Solid	ICP 8300	08/04/15	08/05/15 12:55	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		31.9		0.476	0.952		
SCH-11-4D-03	15-08-0208-28-A	07/07/15 08:36	Solid	ICP 8300	08/04/15	08/05/15 12:56	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		28.8		0.510	1.02		
SCH-11-5D-01	15-08-0208-29-A	07/07/15 08:40	Solid	ICP 8300	08/04/15	08/05/15 12:57	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		29.4		0.510	1.02		
SCH-11-5D-03	15-08-0208-30-A	07/07/15 08:41	Solid	ICP 8300	08/04/15	08/05/15 12:58	150804L08
Parameter	·	Result		RL	DF	Qua	alifiers
Lead		29.2		0.498	0.995		
SCH-13-1D-01	15-08-0208-31-A	07/07/15 10:25	Solid	ICP 8300	08/04/15	08/05/15 12:58	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		183		0.490	0.980		
SCH-13-2D-01	15-08-0208-32-A	07/07/15 10:30	Solid	ICP 8300	08/04/15	08/05/15 12:59	150804L08
Parameter		Result		RL	DF	Qua	alifiers

Return to Contents

Advanced GeoServices Corporatio	n		Date Re	ceived:		08/04/15		
1055 Andrew Drive, Suite A			Work O	rder:			15-08-0208	
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050B	
			Method:				EPA 6010B	
			Units:				mg/kg	
Project: Exide Vernon Offsite / 201	3-3007-09					Pa	ige 5 of 5	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SCH-13-3D-01	15-08-0208-33-A	07/07/15 10:35	Solid	ICP 8300	08/04/15	08/05/15 13:02	150804L08	
Parameter		Result		RL	DF	Qua	alifiers	
Lead		25.8		0.485	0.971			
SCH-13-4D-01	15-08-0208-34-A	07/07/15 10:40	Solid	ICP 8300	08/04/15	08/05/15 13:03	150804L08	
Parameter		Result		RL	DF	Qua	alifiers	
Lead		29.8		0.515	1.03			
SCH-13-5D-01	15-08-0208-35-A	07/07/15 10:45	Solid	ICP 8300	08/04/15	08/05/15 13:04	150804L08	
Parameter		Result		RL	DF	Qua	alifiers	
Lead		37.9		0.518	1.04			
Method Blank	097-01-002-21548	N/A	Solid	ICP 8300	08/04/15	08/05/15 12:19	150804L07	
Parameter		<u>Result</u>		RL	DF	Qua	alifiers	
Lead		ND		0.500	1.00			
Method Blank	097-01-002-21549	N/A	Solid	ICP 8300	08/04/15	08/05/15 12:20	150804L08	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Lead		ND		0.500	1.00			

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	Advanced GeoServices Corporation					08/04/15		
1055 Andrew Drive, Suite	Work Order:			1	5-08-0208			
West Chester, PA 19380-4293			Preparation:			E	PA 3050B	
	Method:	E	PA 6010B					
Project: Exide Vernon Off	site / 2013-3007-09					Page 2	2 of 2	
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Ba	tch Number	
SCH-11-1D-01	Sample	Solid	ICP 8300	08/04/15	08/05/15 12:4	3 150804S08		
SCH-11-1D-01	Matrix Spike	Solid	ICP 8300	08/04/15	08/05/15 12:2	5 150804S08		
SCH-11-1D-01	Matrix Spike Duplicate	Solid	ICP 8300	08/04/15	08/05/15 12:20	6 150804S08		
Parameter	<u>Sample</u> <u>Spike</u> <u>Conc.</u> <u>Added</u>	<u>MS</u> Conc.	MS MSD %Rec. Conc.	MSD <u>%Rec.</u>	%Rec. CL RPI	D RPD CL	<u>Qualifiers</u>	
Lead	481.2 25.00	413.8	4X 295.5	(4X)	75-125 4X	0-20	Q	

FYI

Return to Contents

WORK ORDER NUMBER: 15-08-0208

Calscience

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Advanced GeoServices Corporation Client Project Name: Exide Vernon Offsite / 2013-3007-09 Attention: Adam Doubleday 1055 Andrew Drive, Suite A West Chester, PA 19380-4293

Amande Porter

Approved for release on 08/05/2015 by: Amanda Porter Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🛟 eurofins

Calscience

Contents

	oject Name: der Number:	Exide Vernon Offsite / 2013-3007-09 15-08-0208	
1	Work Or	der Narrative	3
2		ample Data	4 4
3	3.1 MS/	Control Sample Data	9 9 11
4	Sample	Analysis Summary	13
5	Glossary	y of Terms and Qualifiers	14
6	Chain-of	f-Custody/Sample Receipt Form	15

Work Order: 15-08-0208

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 08/04/15. They were assigned to Work Order 15-08-0208.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Advanced GeoServices Corp	ooration		Date Re	ceived:			08/04/15
1055 Andrew Drive, Suite A			Work Or	der:			15-08-0208
West Chester, PA 19380-42	93		Prepara	tion:			EPA 3050E
,			Method:				EPA 6010E
			Units:				mg/kg
Project: Exide Vernon Offsite	e / 2013-3007-09					Pa	ige 1 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-07-1D-01	15-08-0208-1-A	07/06/15 09:15	Solid	ICP 8300	08/04/15	08/05/15 12:27	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		35.7		0.495	0.990		
SCH-07-1D-03	15-08-0208-2-A	07/06/15 09:16	Solid	ICP 8300	08/04/15	08/05/15 12:28	150804L07
Parameter		Result	-	RL	DF	Qua	alifiers
Lead		65.7		0.488	0.976		
SCH-07-1D-06	15-08-0208-3-A	07/06/15 09:17	Solid	ICP 8300	08/04/15	08/05/15 12:31	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		78.9		0.518	1.04		
SCH-07-2D-01	15-08-0208-4-A	07/06/15 09:20	Solid	ICP 8300	08/04/15	08/05/15 12:31	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		213		0.503	1.01		
SCH-07-2D-03	15-08-0208-5-A	07/06/15 09:21	Solid	ICP 8300	08/04/15	08/05/15 12:32	150804L07
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Lead		219		0.515	1.03		
SCH-07-2D-06	15-08-0208-6-A	07/06/15 09:22	Solid	ICP 8300	08/04/15	08/05/15 12:33	150804L07
Parameter		Result		RL	DF	Qua	lifiers
Lead		217		0.508	1.02		
SCH-07-3D-01	15-08-0208-7-A	07/06/15 09:25	Solid	ICP 8300	08/04/15	08/05/15 12:34	150804L07
Parameter		Result	_	RL	DF	Qua	alifiers
Lead		170		0.493	0.985		
SCH-07-3D-03	15-08-0208-8-A	07/06/15 09:26	Solid	ICP 8300	08/04/15	08/05/15 12:35	150804L07
Parameter		Result		RL	DF	<u>Qua</u>	alifiers

Advanced GeoServices Corp	oration		Date Re	ceived:			08/04/15
1055 Andrew Drive, Suite A			Work O	rder:			15-08-0208
West Chester, PA 19380-429	93		Prepara	tion:			EPA 3050E
			Method:				EPA 6010E
			Units:				mg/kg
Project: Exide Vernon Offsite	2013-3007-09					Pa	ige 2 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-07-3D-06	15-08-0208-9-A	07/06/15 09:27	Solid	ICP 8300	08/04/15	08/05/15 12:36	150804L07
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		171		0.483	0.966		
SCH-07-4D-01	15-08-0208-10-A	07/06/15 09:30	Solid	ICP 8300	08/04/15	08/05/15 12:37	150804L07
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		70.3		0.495	0.990		
SCH-07-4D-03	15-08-0208-11-A	07/06/15 09:31	Solid	ICP 8300	08/04/15	08/05/15 12:37	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		65.2		0.513	1.03		
SCH-07-4D-06	15-08-0208-12-A	07/06/15 09:32	Solid	ICP 8300	08/04/15	08/05/15 12:38	150804L07
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		68.7		0.498	0.995		
SCH-07-5D-01	15-08-0208-13-A	07/06/15 09:35	Solid	ICP 8300	08/04/15	08/05/15 12:41	150804L07
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		66.4		0.483	0.966		
SCH-07-5D-03	15-08-0208-14-A	07/06/15 09:36	Solid	ICP 8300	08/04/15	08/05/15 12:42	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		58.7		0.508	1.02		
SCH-07-5D-06	15-08-0208-15-A	07/06/15 09:37	Solid	ICP 8300	08/04/15	08/05/15 12:43	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		23.4		0.518	1.04		
SCH-09-1D-06	15-08-0208-16-A	07/06/15 12:27	Solid	ICP 8300	08/04/15	08/05/15 12:44	150804L07
Parameter		Result		RL	DF	Qua	alifiers
		105					

Advanced GeoServices Corpora	ition		Date Re	ceived:			08/04/15
1055 Andrew Drive, Suite A			Work O	rder:			15-08-0208
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050
			Method:				EPA 6010E
			Units:				mg/kg
Project: Exide Vernon Offsite / 2	013-3007-09					Pa	age 3 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-09-2D-06	15-08-0208-17-A	07/06/15 12:32	Solid	ICP 8300	08/04/15	08/05/15 12:45	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		19.5		0.483	0.966		
SCH-09-3D-06	15-08-0208-18-A	07/06/15 12:38	Solid	ICP 8300	08/04/15	08/05/15 12:46	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		139		0.510	1.02		
SCH-09-4D-06	15-08-0208-19-A	07/06/15 12:42	Solid	ICP 8300	08/04/15	08/05/15 12:46	150804L07
Parameter		Result	·	RL	DF	Qua	alifiers
Lead		163		0.495	0.990		
SCH-09-5D-06	15-08-0208-20-A	07/06/15 12:47	Solid	ICP 8300	08/04/15	08/05/15 12:47	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		17.5		0.490	0.980		
SCH-11-1D-01	15-08-0208-21-A	07/07/15 08:20	Solid	ICP 8300	08/04/15	08/05/15 12:48	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		481		0.495	0.990		
SCH-11-1D-03	15-08-0208-22-A	07/07/15 08:21	Solid	ICP 8300	08/04/15	08/05/15 12:49	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		220		0.505	1.01		
SCH-11-2D-01	15-08-0208-23-A	07/07/15 08:25	Solid	ICP 8300	08/04/15	08/05/15 12:52	150804L08
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Lead		688		0.481	0.962		
SCH-11-2D-03	15-08-0208-24-A	07/07/15 08:26	Solid	ICP 8300	08/04/15	08/05/15 12:53	150804L08
		Result		RL	DF	0	alifiers
<u>Parameter</u>		<u>IXCSuit</u>				Qui	

Advanced GeoServices Corpora	ation		Date Re	ceived:			08/04/15
1055 Andrew Drive, Suite A			Work Or	der:			15-08-0208
West Chester, PA 19380-4293			Preparat	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: Exide Vernon Offsite / 2	013-3007-09					Pa	age 4 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-11-3D-01	15-08-0208-25-A	07/07/15 08:30	Solid	ICP 8300	08/04/15	08/05/15 12:53	150804L08
Parameter		Result		RL	DF	Qu	alifiers
Lead		80.8		0.513	1.03		
SCH-11-3D-03	15-08-0208-26-A	07/07/15 08:31	Solid	ICP 8300	08/04/15	08/05/15 12:54	150804L08
Parameter		Result		RL	DF	Qu	alifiers
Lead		85.2		0.508	1.02		
SCH-11-4D-01	15-08-0208-27-A	07/07/15 08:35	Solid	ICP 8300	08/04/15	08/05/15 12:55	150804L08
Parameter		Result		RL	DF	Qu	alifiers
Lead		31.9		0.476	0.952		
SCH-11-4D-03	15-08-0208-28-A	07/07/15 08:36	Solid	ICP 8300	08/04/15	08/05/15 12:56	150804L08
Parameter		Result		RL	DF	Qu	alifiers
Lead		28.8		0.510	1.02		
SCH-11-5D-01	15-08-0208-29-A	07/07/15 08:40	Solid	ICP 8300	08/04/15	08/05/15 12:57	150804L08
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qu	alifiers
Lead		29.4		0.510	1.02		
SCH-11-5D-03	15-08-0208-30-A	07/07/15 08:41	Solid	ICP 8300	08/04/15	08/05/15 12:58	150804L08
Parameter		Result		<u>RL</u>	DF	Qu	alifiers
Lead		29.2		0.498	0.995		
SCH-13-1D-01	15-08-0208-31-A	07/07/15 10:25	Solid	ICP 8300	08/04/15	08/05/15 12:58	150804L08
Parameter		Result		RL	DE	Qua	alifiers
Lead		183		0.490	0.980		
SCH-13-2D-01	15-08-0208-32-A	07/07/15 10:30	Solid	ICP 8300	08/04/15	08/05/15 12:59	150804L08
SCH-13-2D-01 Parameter	15-08-0208-32-A		Solid	ICP 8300 RL	08/04/15 DF	12:59	150804L08

Advanced GeoServices Corporati	ion		Date Re	ceived:			08/04/15
1055 Andrew Drive, Suite A			Work O	rder:			15-08-0208
West Chester, PA 19380-4293			Prepara	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: Exide Vernon Offsite / 20	13-3007-09					Pa	ige 5 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SCH-13-3D-01	15-08-0208-33-A	07/07/15 10:35	Solid	ICP 8300	08/04/15	08/05/15 13:02	150804L08
Parameter		Result		RL	DF	Qua	alifiers
Lead		25.8		0.485	0.971		
SCH-13-4D-01	15-08-0208-34-A	07/07/15 10:40	Solid	ICP 8300	08/04/15	08/05/15 13:03	150804L08
Parameter		<u>Result</u>		RL	DF	Qua	alifiers
Lead		29.8		0.515	1.03		
SCH-13-5D-01	15-08-0208-35-A	07/07/15 10:45	Solid	ICP 8300	08/04/15	08/05/15 13:04	150804L08
Parameter		Result	·	<u>RL</u>	DF	Qua	alifiers
Lead		37.9		0.518	1.04		
Method Blank	097-01-002-21548	N/A	Solid	ICP 8300	08/04/15	08/05/15 12:19	150804L07
Parameter		Result		RL	DF	Qua	alifiers
Lead		ND		0.500	1.00		
Method Blank	097-01-002-21549	N/A	Solid	ICP 8300	08/04/15	08/05/15 12:20	150804L08
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Lead		ND		0.500	1.00		

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	Corporation		Date F	Received	:				08/04/15
1055 Andrew Drive, Suite	A		Work	Order:				1	5-08-0208
West Chester, PA 19380-	4293		Prepa	ration:				E	PA 3050B
			Metho	d:				E	PA 6010B
Project: Exide Vernon Off	site / 2013-3007-09							Page 1	of 2
Quality Control Sample ID	Туре	Matrix	Inst	rument	Date Prepared	Date Anal	lyzed	MS/MSD Ba	tch Number
SCH-07-1D-01	Sample	Solid	ICP	8300	08/04/15	08/05/15 ·	12:27	150804S07	
SCH-07-1D-01	Matrix Spike	Solid	ICP	8300	08/04/15	08/05/15 ⁻	12:24	150804S07	
SCH-07-1D-01	Matrix Spike Duplic	ate Solid	ICP	8300	08/04/15	08/05/15 ⁻	12:24	150804S07	
Parameter	<u>Sample Spik</u> <u>Conc.</u> Add		<u>MS</u> %Rec.	<u>MSD</u> Conc.	MSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Lead	35.70 25.0	0 59.58	96	58.69	92	75-125	2	0-20	

Quality Control - Spike/Spike Duplicate

Advanced GeoServices C	orporation			Date F	eceived	:				08/04/15
1055 Andrew Drive, Suite	A			Work (Order:				1:	5-08-0208
West Chester, PA 19380-	4293			Prepa	ation:				E	PA 3050B
				Metho	d:				E	PA 6010B
Project: Exide Vernon Off	site / 2013-3007	'- 09							Page 2	2 of 2
Quality Control Sample ID	Туре		Matrix	Inst	ument	Date Prepared	Date Ana	yzed	MS/MSD Bat	tch Number
SCH-11-1D-01	Sample		Solid	ICP	8300	08/04/15	08/05/15	12:48	150804S08	
SCH-11-1D-01	Matrix Spike		Solid	ICP	8300	08/04/15	08/05/15	12:25	150804S08	
SCH-11-1D-01										
3011-11-10-01	Matrix Spike	Duplicate	Solid	ICP	8300	08/04/15	08/05/15	12:26	150804S08	
Parameter	Matrix Spike Sample Conc.	Duplicate Spike Added	Solid <u>MS</u> <u>Conc.</u>	MS <u>%Rec.</u>	8300 <u>MSD</u> <u>Conc.</u>		08/05/15	12:26 <u>RPD</u>		Qualifiers

Advanced GeoServices Corporation	Date Received:	08/04/15
1055 Andrew Drive, Suite A	Work Order:	15-08-0208
West Chester, PA 19380-4293	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 1 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-21548	LCS	Solid	ICP 8300	08/04/15	08/05/15 12:21	150804L07
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	<u>%Rec.</u>	. CL Qualifiers
Lead		25.00	26.19	105	80-120)

Advanced GeoServices Corporation	Date Received:	08/04/15
1055 Andrew Drive, Suite A	Work Order:	15-08-0208
West Chester, PA 19380-4293	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: Exide Vernon Offsite / 2013-3007-09		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-21549	LCS	Solid	ICP 8300	08/04/15	08/05/15 12:22	150804L08
Parameter		Spike Added	Conc. Recover	ed <u>LCS %R</u>	ec. <u>%Rec</u>	<u>CL</u> <u>Qualifiers</u>
Lead		25.00	25.92	104	80-120)

Calscience

Work Order: 15-08-0208Page 1 of 1MethodExtractionChemist IDInstrumentAnalytical LocationEPA 6010BEPA 3050B935ICP 83001

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-08-0208

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. Х % Recovery and/or RPD out-of-range. Ζ Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

1055 Andrew Dr. Suite A West Chester, PA 19380 tel 610.840.9100

ADVANCED GEOSERVICES CORP. **CHAIN OF CUSTODY**

Page 1 of 3

208 Del-Like	REMARKS		Invoice to Exide																	1616	NC8/	
15-08-0208		5	Preservatives																	Date/Time: 9/4/15	Date/Time: $\overline{a/4}/5$	•••
courier pick-up Results only 6	ANALYSIS																				C Date/Tit	
Project # 2013-3007-09 Shipment # Shipment Tracking # Deliverables (circle one)			# of Container Lead		1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X		5	
Project # 20 Shipment # Shipment T Deliverable			Field Filtered		Z	Z	Z	Z	N	N	Z	Z	Z	Z	Z	Z	Z	Z	Z	1		
Proje Shipn Shipn Deliv			xitteM		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	An 1		
		01 (J)	C) əqvT əlqma	S	G	G	G	D.	G	G	G	G	Ð	Ð	G	G	G	G	IJ	Blu		
24-Hour			Time		٩ اک	516	917	920	921	922	925	926	527	9 30	931	932	935	936	937	Received By:	Received By:	
72-Hour			Date		7/ 6 /15	7/ G /15	7/ 6 /15	71 6 /15	7/ 6 /15	7/ G /15	7/ 6/15	7/ 6 /15	7/ 6 /15	7/ 6. /16	7/ 6/17	7/ 6 /18	7/ 6 /19	7/ 6 /20	7/ 6 /21			
Project Name: Exide Vernon Offsite AGC Contact: Adam Doubleday Lab Name/Location: Calscience, Garden Grove, CA Turharound Time (circle one) Standard 5-Day			Sample ID		SCH-07 - 10 - 01	SCH- 07- 10-03	SCH- 07 - 10 - 06	4 SCH-07 - 20 - 01	SCH- 07 - 20 - 03	SCH-07-20-06	SCH-07 - 30 - 01	SCH-07 - 30 - 03	SCH-07 - 30 - 06	SCH-07-46-01	SCH-0フ - イム - ひま	SCH-0フ- イム - 06	SCH- 67 - 50 - 01	SCH- 07 - 50 - 03	SCH- 07 - 50- 06	Relinquished By: Why with	Relinquished By: / RUdy M	7
roject VGC C ab Na urhar	\square	Å	InO əsU daJ		Ű	2	5	4	Ŭ	39	1	G	0	0	11	12	[3]	14	5	telinat	selinqı.	
	L				ل ــــــــــــــــــــــــــــــــــــ	L	L		L	L	L						L		T	12	4	

Return to Contents

Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, Sid - Sludge, A - Air C:UsersIbantDesktoptExide VermonTtest Borings/Chain of Custody - Feed Room Bag

Preservative: 1-ice, 2-H2SO4, 3-HCl, 4-HNO3, 5-NaOH, 6-ZnOAC

tel X H	055 An est Che 1 610.8	1055 Andrew Dr. Suite A West Chester, PA 19380 tel 610.840.9100		ADVANCED GEOSERVICES CORP. CHAIN OF CUSTODY	VCED GEOSERVICES CHAIN OF CUSTODY	SERV	/ICE TOD	S CO	RP.					Page 2 of 3
	rojec GC (ab N urna	e: Exide Vernon Offsite t: Adam Doubleday ocation: Calscience, Garden G Time (circle one) Standard	72-Hour (24-Hour		Project # 2(Shipment # Shipment T Deliverable	ct # 2(nent # nent T srable	Project # 2013-3007-0 Shipment # Shipment Tracking # Deliverables (circle o	Project # 2013-3007-09 Shipment # Shipment Tracking # Deliverables (circle one)	courier pick-up Results only	3	b Results/QC summary	620B	o P y DLP-Like
						-	\vdash			ANALYSIS	IS		-	REMARKS
	ر Nab Usz مار	Sample ID	Date	Time	(O to O) sqyT slqmsZ	xintsM	Field Filtered	# Of Containers	Lead				Preservatives	Invoice to Exide
L	16	SCH- 09 - 10 - 06	7/ 6 /15	1227	IJ	S	z		x					
	51	SCH- 0 २ - २० - ०७	7/ 6 /15	1232	Ð	S	z		x					
	18	SCH- 0 9 - 3 0 - 06	7/ 6/15	1237	G	S	Z		X					
		SCH-09 - 40 - 06	7/ 6 /15	1242	G	S	N		X					
	2	SCH- 09 - 50 -06	7/ 6 /15	くして	G	S	N		X					
~	~	SCH- 11 - 10 - 01	7/ 7 /15	820	G	S	Z		X					
<u>``</u> }	27	SCH- 11 - 10 - 03	7/ 7 /15	891	ŋ	S	Z		X					
	5	SCH- 11 - 20 - 01	7/7/15	825	IJ	S	Z		X					
[]	t	SCH-11 - 20 - 03	7/7/15	୫ଅଜ	IJ	S	z		x					
<u>, 1</u>	R	SCH- 11 - 30 - 01	7/ 7/15	830	IJ	S	z	\sum	X					
<u>רו</u>	Ś	SCH- 11 - 3 D - 03	7/7/15	831	IJ	S	z		X					
n	2	SCH- II - 4-0-01	7/7/15	لا 35	IJ	S	Z		X					
7	3	SCH-11-40-03	7/7/15	836	ß	S	Z		X					
N	q	SCH-11 - 513 - 01	7/ 7 /15	840	IJ	S	Z		X					
<u> </u>	2	SCH-11-50-03	7/7/15	941	IJ	S	Z		X					
· 24	eling	Relinquished By: Relinque Suff		Received Bv:	Que de la compañía de la comp	de	X		しい	Dat	Date/Time:	H/ &	15	1616
R	cling	Relinquished By: D. M. dy W		Received By:	8	D	Γġ			Zee Dat	Date/Time:	13 N		/ pro
Pre	eservat	Preservative: 1-ice, 2-H-SO4, 3-HCI, 4-HNO4, 5-NaOH, 6-ZnOAC	5-ZnOAC			Q				Ì			1)

Page 16 of 18

Return to Contents

Preservative: 1-ice, 2- H₂SO₄, 3-HCl, 4-HNO₃, 5-NaOH, 6-ZnOAC Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, Sld - Sludge, A - Air C:UsersjbantDesttoptExide VernonTest Borings(Chain of Custody - Feed Room Bag

7 3 S	055 An est Ch 1 610.8	1055 Andrew Dr. Sulte A West Chester, PA 19380 tel 610.840.9100		ADVANCED GEOSERVICES CORP. CHAIN OF CUSTODY	VCED GEOSERVICES CHAIN OF CUSTODY	ERV	CES	CORP							Page 3 of 3	_
	rojet GC- lab N lurns	Project Name: Exide Vernon Offsite AGC Contact: Adam Doubleday Lab Name/Location: Calscience, Garden Grove, CA Turnaround Time (circle one) Standard 5-Day	72-Hour (24-Hour		Project # 20 Shipment # Shipment T Deliverable	t # 20 ent # ent T1 rables	Project # 2013-3007-09 Shipment # Shipment Tracking # Deliverables (circle one)) () () () () () () () () () () () () ()	courier pick-up Results only	pick-u only	Less L	p Results/QC summary		U Da P	
L										ANALYSIS	YSIS				REMARKS	
	Vab Use Only	Sample ID	Date	Time	Sample Type (C or G)	Matrix Field Filtered	# of Containers	Lead	· · · · · · · · · · · · · · · · · · ·			······································		Preservatives	Invoice to Exide	
	12	SCH-13 - 10 - 61	7/ 7 /15	1025	0	N S	+	×		1		1		_		
<u> </u>	12	SCH-13-20-01	71 7 /15	1030	U	S N		×				ļ.				1
<u></u>	Je~	SCH-13-30-01	7/ 7 /15	1035	G	Z S		×								
nan aral aradi da seria da se	3	SCH-13-40-01	21/ 1/ 1/2	0401	0	S 1	-NN	X	a de la companya de l				and the second			
.	22	SCH-13-5D-01	7/ 7 /15	2401	υ	S N		×								
ł		Sett-	m1 115		د	С С		×								
L		Set	CI <i>1 </i>		5	2		k								
.i		SCH -	11 115		σ		H	;;								<u>.</u>
. 1		SOL.	CH 11		þ	1		X								<u> </u>
I		-LDS	CH //		þ											
		SCH	CI1 //		5	S		×		T						
		Sett	CI/ //		Ь	Г 0	Ē	k						╢		
L		SCH-	SI/ /L		5	2		×		T						
		Seu	CI/ //		5	2	2	<								
		Hos	C11 11		G	S	I N	X		T	T	1	-		1	
	Relin	Relinquished By: Mr. Satt Relinquished By: Dudy I		Received By: Received By:	Rudy	Mr.		EC	ECT		Date/Time:_ Date/Time:_	ime: ime:	8/1	the second	5 1616	
لې رات مسد	reserv ample Auserst	Preservative: 1-ice, 2- H ₂ SO ₄ , 3-HCl, 4-HNO ₃ , 5-NaOH, 6-ZnOAC Sample Matrix: SW - Surface Water, GW - Groundwater, Sed - Sediment, S - Soil, SId - Sludge, A - Air C.Usses/JantDoskop/Exide Veneon/Test Borings/Chain of Custody - Feed Room Bag	-ZnOAC d - Sediment, S - Soil, ^{Bag}	Sid - Sludge, A - A	ir Return to Contents	Contents										

~

1 •

ೆಗ್ಗ

4

seurofins work order NUMBER	Page	e 18 of	18 Dop
Calcolongo			1
SAMPLE RECEIPT CHECKLIST	COOLER	<u> </u>	DF <u>/</u>
CLIENT: <u>ADVANCED GEUSERVICES CURP</u> , D.	ATE: 08 /	<u> </u>	/ 2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC5 (CF:-0.2°C); Temperature (w/o CF): <u>J</u> °C (w/ CF): <u>J</u> °C; □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling □ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter	□ Blank ☑ Checke		
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N/A Sample(s) □ Present and Intact □ Present but Not Intact □ Not Present □ N/A	Checke Checke		
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete Document(s) received complete	· · ·	No □ □	N/A
□ Sampling date □ Sampling time □ Matrix □ Number of containers □ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished tim Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition	🛛		
Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time			
 □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses □ Volatile Organics □ Total Metals □ Dissolved Metals 			ď
Container(s) for certain analysis free of headspace			
Tedlar™ bag(s) free of condensation	ber:)
 □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500A □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores[®] () □ TerraCores Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/R Preservative: b = buffered, f = filtered, h = HCl, n = HNO₃, na = NaOH, na₂ = Na₂S₂O₃, p = H₃PO₄, Laber s = H₂SO₄, u = ultra-pure, znna = Zn(CH₃CO₂)₂ + NaOH 	□) □ Lesealable Ba	□ Zi r □ _ ag ed by:	1013